
A Firmware Development Standard
Version 1.2, Updated Jan, 2004

Jack G. Ganssle
jack@ganssle.com

The Ganssle Group
PO Box 38346

Baltimore, MD 21231
 fax (647) 439-1454

Firmware Development Standard

Page 2
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Table of Contents
Table of Contents _____________________________________2

Scope ___3

Projects ___4
Directory Structure _____________________________________ 4

Version File__ 4

Make and Project Files __________________________________ 5

Startup Code __ 5

Stack and Heap Issues ___________________________________ 6

Modules ___8
General ___ 8

Templates ___ 8

Module Names ___ 9

Variables ___11
Names ___ 11

Global Variables ______________________________________ 11

Portability__ 11

Functions __12

Interrupt Service Routines _____________________________13

Comments __14

Coding Conventions __________________________________15

General __15

Spacing and Indentation ________________________________15

C Formatting__15

Assembly Formatting ___________________________________16

Tools __ 17
Computers __17

Compilers et al __17

Debugging __17

Firmware Development Standard

Page 3
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Scope
This document defines the standard way all programmers will
create embedded firmware. Every programmer is expected to be
intimately familiar with the Standard, and to understand and
accept these requirements. All consultants and contractors will
also adhere to this Standard.

The reason for the Standard is to insure all Company-developed
firmware meets minimum levels of readability and
maintainability. Source code has two equally-important functions:
it must work, and it must clearly communicate how it works to a
future programmer or the future version of yourself. Just as a
standard English grammar and spelling makes prose readable,
standardized coding conventions ease readability of one’s
firmware.

Part of every code review is to insure the reviewed modules and
functions meet the requirements of the Standard. Code that does
not meet this Standard will be rejected.

We recognize that no Standard can cover every eventuality. There
may be times where it makes sense to take exception to one or
more of the requirements incorporated in this document. Every
exception must meet the following requirements:

• Clear Reasons - Before making an exception to the Standard,
the programmer(s) will clearly spell out and understand the
reasons involved, and will communicate these reasons to the
project manager. The reasons must involve clear benefit to the
project and/or Company; stylistic motivations, or programmer
preferences and idiosyncrasies are not adequate reasons for
making an exception.

• Approval - The project manager will approve all exceptions
made

• Documentation - The effected module or function will have
the exception clearly documented in the comments, so during
code reviews and later maintenance the current and future
technical staff understand the reasons for the exception, and
the nature of the exception.

Firmware Development Standard

Page 4
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Projects
Directory Structure
To simplify use of a version control system, and to deal with
unexpected programmer departures and sicknesses, every
programmer involved with each project will maintain identical
directory structures for the source code associated with the
project.

The general “root” directory for a project takes the form:
/projects/project-name/rom_name

where
• “/projects” is the root of all firmware developed by the

Company. By keeping all projects under one general directory
version control and backup is simplified; it also reduces the
size of the computer’s root directory.

• “/project-name” is the formal name of the project under
development.

• “/rom_name” is the name of the ROM the code pertains to.
One project may involve several microprocessors, each of
which has its own set of ROMs and code. Or, a single project
may have multiple binary images, each of which goes into its
own set of ROMs.

Required directories:
/projects/project-name/tools - compilers, linkers,

assemblers used by this project. All tools will be checked
into the VCS so in 5 to 10 years, when a change is
required, the (now obsolete and unobtainable) tools will
still be around. It’s impossible to recompile and retest the

project code every time a new version of the compiler or
assembler comes out; the only alternative is to preserve
old versions, forever, in the VCS.

/projects/project-name/rom_name/headers - all
header files, such as .h or assemble include files, go here.

/projects/project-name/rom_name/source - source
code. This may be further broken down into header, C, and
assembly directories. The MAKE files are also stored here.

/projects/project-name/rom_name/object - object
code, including compiler/assembler objects and the linked
and located binaries.

/projects/project-name/rom_name/test - This
directory is the one, and only one, that is not checked into
the VCS and whose subdirectory layout is entirely up to
the individual programmer. It contains work-in-progress,
which is generally restricted to a single module. When the
module is released to the VCS or the rest of the
development team, the developer must clean out the
directory and eliminate any file that is duplicated in the
VCS.

Version File
Each project will have a special module that provides firmware
version name, version date, and part number (typically the part
number on the ROM chips). This module will list, in order (with
the newest changes at the top of the file), all changes made from
version to version of the released code.

Firmware Development Standard

Page 5
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Remember that the production or repair departments may have to
support these products for years or decades. Documentation gets
lost and ROM labels may come adrift. To make it possible to
correlate problems to ROM versions, even after the version label
is long gone, the Version file should generate only one bit of
“code” - a string that indicates, in ASCII, the current ROM
version. Some day in the future a technician - or yourself! - may
then be able to identify the ROM by dumping the ROM’s
contents. An example definition is:
undef VERSION
define VERSION “Version 1.30”

Example:
/**
* Version Module - Project SAMPLE
*
* Copyright 1997 Company
* All Rights Reserved
*
* The information contained herein is confidential
* property of Company. The use, copying, transfer or
* disclosure of such information is prohibited except
* by express written agreement with Company.
*
* 12/18/97 - Version 1.3 - ROM ID 78-130
* Modified module AD_TO_D to fix scaling
* algorithm; instead of y=mx, it now
* computes y=mx+b.
* 10/29/97 - Version 1.2 - ROM ID 78-120
* Changed modules DISPLAY_LED and READ_DIP
* to incorporate marketing’s request for a
* diagnostics mode.
* 09/03/97 - Version 1.1 - ROM ID 78-110
* Changed module ISR to properly handle
* non-reentrant math problem.
* 07/12/97 - Version 1.0 - ROM ID 78-100
* Initial release
**/

undef VERSION
define VERSION “Version 1.30”

Make and Project Files
Every executable will be generated via a MAKE file, or the
equivalent supported by the tool chain selected. The MAKE file
includes all of the information needed to automatically build the
entire ROM image. This includes compiling and assembling
source files, linking, locating (if needed), and whatever else must
be done to produce a final ROM image.

An alternative version of the MAKE file may be provided to
generate debug versions of the code. Debug versions may include
special diagnostic code, or might have a somewhat different
format of the binary image for use with debugging tools.

In integrated development environments (like Visual C++) specify
a PROJECT file that is saved with the source code to configure all
MAKE-like dependencies.

In no case is any tool ever to be invoked by typing in a command,
as invariably command line arguments “accumulate” over the
course of a project… only to be quickly forgotten once version 1.0
ships.

Startup Code
Most ROM code, especially when a C compiler is used, requires
an initial startup module that sets up the compiler’s runtime
package and initializes certain hardware on the processor itself,
including chip selects, wait states, etc.

Firmware Development Standard

Page 6
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Startup code generally comes from the compiler or locator vendor,
and is then modified by the project team to meet specific needs of
the project. It is invariably compiler- and locator-specific.
Therefore, the first modification made to the startup code is an
initial comment that describes the version numbers of all tools
(compiler, assembler, linker, and locator) used.

Vendor-supplied startup code is notoriously poorly documented.
To avoid creating difficult-to-track problems, never delete a line
of code from the startup module. Simply comment-out unneeded
lines, being careful to put a note in that you were responsible for
disabling the specific lines. This will ease re-enabling the code in
the future (for example, if you disable the floating point package
initialization, one day it may need to be brought back in).

Many of the peripherals may be initialized in the startup module.
Be careful when using automatic code generation tools provided
by the processor vendor (tools that automate chip select setup, for
example). Since many processor boot with RAM chip selects
disabled, always include the chip select and wait state code in-line
(not as a subroutine). Be careful to initialize these selects at the
very top of the module, to allow future subroutine calls to operate,
and since some debugging tools will not operate reliably until
these are set up.

Stack and Heap Issues
Always initialize the stack on an even address. Resist the
temptation to set it to a odd value like 0xffff, since on a word
machine an odd stack will cripple system performance.
Since few programmers have a reasonable way to determine
maximum stack requirements, always assume your estimates will
be incorrect. For each stack in the system, make sure the

initialization code fills the entire amount of memory allocated to
the stack with the value 0x55. Later, when debugging, you can
view the stack and detect stack overflows by seeing no blocks of
0x55 in that region. Be sure, though, that the code that fills the
stack with 0x55 automatically detects the stack’s size, so a late
night stack size change will not destroy this useful tool.

Embedded systems are often intolerant of heap problems.
Dynamically allocating and freeing memory may, over time,
fragment the heap to the point that the program crashes due to an
inability to allocate more RAM. (Desktop programs are much less
susceptible to this as they typically run for much shorter periods
of time).

So, be wary of the use of the malloc() function. When using a new
tool chain examine the malloc function, if possible, to see if it
implements garbage collection to release fragmented blocks (note
that this may bring in another problem, as during garbage
collection the system may not be responsive to interrupts). Never
blindly assume that allocating and freeing memory is cost- or
problem-free.

If you chose to use malloc(), always check the return value and
safely crash (with diagnostic information) if it fails.

When using C, if possible (depending on resource issues and
processor limitations), always include Walter Bright’s MEM
package (www.snippets.org/mem.txt) with the code, at least for
the debugging.
MEM provides:
• ISO/ANSI verification of allocation/reallocation functions
• Logging of all allocations and frees

Firmware Development Standard

Page 7
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

• Verifications of Frees
• Detection of pointer over- and under-runs.
• Memory leak detection

• Pointer checking
• Out of memory handling

Firmware Development Standard

Page 8
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Modules
General
A Module is a single file of source code that contains one or more
functions or routines, as well as the variables needed to support
the functions.

Each module contains a number of related functions. For instance,
an A/D converter module may include all A/D drivers in a single
file. Grouping functions in this manner makes it easier to find
relevant sections of code, and allows more effective
encapsulation.

Encapsulation - hiding the details of a function’s operation, and
keeping the variables used by the function local - is absolutely
essential. Though C and assembly language don’t explicitly
support encapsulation, with careful coding you can get all of the
benefits of this powerful idea as do people using OOP languages.

In C and assembly language you can define all variables and
RAM inside the modules that use those values. Encapsulate the
data by defining each variable for the scope of the functions that
use these variables only. Keep them private within the function, or
within the module, that uses them.

Modules tend to grow large enough that they are unmanageable.
Keep module sizes under 1000 lines to insure tools (source
debuggers, compilers, etc.) are not stressed to the point they
become slow or unreliable, and to ease searching.

Templates
To encourage a uniform module look and feel, create module
templates named “module_template.c” and
“module_template.asm”, stored in the source directory, that
becomes part of the code base maintained by the VCS. Use one
of these files as the base for all new modules. The module
template includes a standardized form for the header (the
comment block preceding all code), a standard spot for file
includes and module-wide declarations, function prototypes and
macros. The templates also include the standard format for
functions.

Here’s the template for C code:

/***
* Module name:
*
* Copyright 1997 Company as an unpublished work.
* All Rights Reserved.
*
* The information contained herein is confidential
* property of Company. The user, copying, transfer or
* disclosure of such information is prohibited except
* by express written agreement with Company.
*
* First written on xxxxx by xxxx.
*
* Module Description:
* (fill in a detailed description of the module’s
* function here).
*
***/
/* Include section

Firmware Development Standard

Page 9
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

* Add all #includes here
*
***/
/* Defines section
* Add all #defines here
*
***/
/* Function Prototype Section
* Add prototypes for all functions called by this
* module, with the exception of runtime routines.
*
***/

The template includes a section defining the
general layout of functions, as follows:

/**
* Function name : TYPE foo(TYPE arg1, TYPE arg2…)
* returns : return value description
* arg1 : description
* arg2 : description
* Created by : author’s name
* Date created : date
* Description : detailed description
* Notes : restrictions, odd modes
**/

The template for assembly modules is:

;**
; Module name:
;
; Copyright 1997 Company as an unpublished work.
; All Rights Reserved.
;
; The information contained herein is confidential
; property of Company. The user, copying, transfer or
; disclosure of such information is prohibited except
; by express written agreement with Company.
;

; First written on xxxxx by xxxx.
;
; Module Description:
; (fill in a detailed description of the module
; here).
;
;***
; Include section
; Add all “includes” here
;***

The template includes a section defining the general
layout of functions, as follows:

;***
; Routine name : foobar
; returns : return value(s) description
; arg1 : description of arguments
; arg2 : description
; Created by : author’s name
; Date created : date
; Description : detailed description
; Notes : restrictions, odd modes
;**

Module Names
Never include the project’s name or acronym as part of each
module name. It’s much better to use separate directories for each
project.

Big projects may require many dozens of modules; scrolling
through a directory listing looking for the one containing function
main() can be frustrating and confusing. Therefore store function
main() in a module named main.c or main.asm.

File extensions will be:
C Source Code FileName.c
C Header File FileName.h

Firmware Development Standard

Page 10
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Assembler files FileName.asm
Assembler include files FileName.inc
Object Code FileName.obj
Libraries FileName.lib
Shell Scripts FileName.bat
Directory Contents README

Build rules for make Project.mak

Firmware Development Standard

Page 11
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Variables
Names
Regardless of language, use long names to clearly specify the
variable’s meaning. If your tools do not support long names, get
new tools.

Separate words within the variables by underscores. Do not use
capital letters as separators. Consider how much harder
IcantReadThis is on the eyes versus I_can_read_this.

The ANSI C specification restricts the use of names that begin
with an underscore and either an uppercase letter or another
underscore (_[A-Z_][0-9A-Za-z_]). Much compiler runtime code
also starts with leading underscores. To avoid confusion, never
name a variable or function with a leading underscore.

These names are also reserved by ANSI for its future expansion:
E[0-9A-Z][0-9A-Za-z]* errno values
is[a-z][0-9A-Za-z]* Character classification
to[a-z][0-9A-Za-z]* Character manipulation
LC_[0-9A-Za-z_]* Locale
SIG[_A-Z][0-9A-Za-z_]* Signals
str[a-z][0-9A-Za-z_]* String manipulation
mem[a-z][0-9A-Za-z_]* Memory manipulation
wcs[a-z][0-9A-Za-z_]* Wide character manipulation

Global Variables
All too often C and especially assembly programs have one huge
module with all of the variable definitions. Though it may seem

nice to organize variables in a common spot, the peril is these are
all then global in scope. Global variables are responsible for much
undebuggable code, reentrancy problems, global warming and
male pattern baldness. Avoid them!

Real time code may occasionally require a few - and only a few -
global variables to insure reasonable response to external events.
Every global variable must be approved by the project manager.

When globals are used, put all of them into a single module. They
are so problematic that it’s best to clearly identify the sin via the
name globals.c or globals.asm.

Portability
Avoid the use of “int” and “long”, as these declarations vary
depending on the machine. Either use a C99-compliant compiler,
or create typedefs to emulate its use of integers, as follows:

signed unsigned
8 bit: int8_t uint8_t
16 bit: int16_t uint16_t
32 bit: int32_t uint32_t
64 bit: int64_t uint64_t

Don't assume that the address of an int object is also the address
of its least-significant byte. This is not true on big-endian
machines.

Functions
Regardless of language, keep functions small! The ideal size is
less than a page; in no case should a function ever exceed two
pages. Break large functions into several smaller ones.

The only exception to this rule is the very rare case where real
time constraints (or sometimes stack limitations) mandate long
sequences of in-line code. The project manager must approve all
such code… but first look hard for a more structured alternative!

Explicitly declare every parameter passed to each function.
Clearly document the meaning of the parameter in the comments.

Define a prototype for every called functions, with the exception
of those in the compiler’s runtime library. Prototypes let the
compiler catch the all-too-common errors of incorrect argument
types and improper numbers of arguments. They are cheap
insurance.

In general, function names should follow the variable naming
protocol. Remember that functions are the “verbs” in programs -
they do things. Incorporate the concept of “action words” into the
variables’ names. For example, use “read_A/D” instead of
“A/D_data”, or “send_to_LCD” instead of “LCD_out”.

Firmware Development Standard

Page 13
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Interrupt Service Routines
ISRs, though usually a small percentage of the code, are often the
hardest bits of firmware to design and debug. Crummy ISRs will
destroy the project schedule!

Decent interrupt routines, though, require properly designed
hardware. Sometimes it’s tempting to save a few gates by letting
the external device just toggle the interrupt line for a few
microseconds. This is unacceptable. Every interrupt must be
latched until acknowledged, either by the processor’s interrupt-
acknowledge cycle (be sure the hardware acks the proper interrupt
source), or via a handshake between the code and the hardware.

Use the non-maskable interrupt only for catastrophic events, like
the apocalypse or immanent power failure. Many tools cannot
properly debug NMI code. Worse, NMI is guaranteed to break
non-reentrant code.

If at all possible, design a few spare I/O bits in the system. These
are tremendously useful for measuring ISR performance.

Keep ISRs short! Long (too many lines of code) and slow are the
twins of ISR disaster. Remember that long and slow may be
disjoint; a five line ISR with a loop can be as much of a problem
as a loop-free 500 line routine. When an ISR grows too large or
too slow, spawn another task and exit. Large ISRs are a sure sign
of a need to include a RTOS.

Budget time for each ISR. Before writing the routine, understand
just how much time is available to service the interrupt. Base all
of your coding on this, and then measure the resulting ISR
performance to see if you met the system’s need. Since every
interrupt competes for CPU resources, that slow ISR that works is
just as buggy as one with totally corrupt code.

Never allocate or free memory in an ISR unless you have a clear
understanding of the behavior of the memory allocation routines.
Garbage collection or the ill-behaved behavior of many runtime
packages may make the ISR time non-deterministic.

On processors with interrupt vector tables, fill every entry of the
table. Point those entries not used by the system to an error
handler, so you’ve got a prayer of finding problems due to
incorrectly-programmed vectors in peripherals.

Though non-reentrant code is always dangerous in a real time
system, it’s often unavoidable in ISRs. Hardware interfaces, for
example, are often non-reentrant. Put all such code as close to the
beginning of the ISR as possible, so you can then re-enable
interrupts. Remember that as long as interrupts are off the system
is not responding to external requests.

Firmware Development Standard

Page 14
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Comments
Code implements an algorithm; the comments communicate the
code’s operation to yourself and others. Adequate comments
allow you to understand the system’s operation without having to
read the code itself.

Write comments in clear English. Use the sentence structure Miss
Grandel tried to pound into your head in grade school. Avoid
writing the Great American Novel; be concise yet explicit… but
be complete.

Avoid long paragraphs. Use simple sentences: noun, verb, object.
Use active voice: "Start_motor actuates the induction relay after a
4 second pause". Be complete. Good comments capture
everything important about the problem at hand.

Use proper case. Using all caps or all lower case simply makes the
comments harder to read.

Enter comments in C at block resolution and when necessary to
clarify a line. Don’t feel compelled to comment each line. It is
much more natural to comment groups of lines which work
together to perform a macro function. However, never assume that
long variable names create “self documenting code”. Self
documenting code is an oxymoron, so add comments where
needed to make the firmware’s operation crystal clear. It should
be possible to get a sense of the system’s operation by reading
only the comments.

Explain the meaning and function of every variable declaration.
Every single one. Explain the return value, if any. Long variable
names are merely an aid to understanding; accompany the
descriptive name with a deep, meaningful, prose description.
Explain the parameters during the function definition, as follows:

type function_name(type parameter1 /* comment */
 type parameter2 /* comment */)

Comment assembly language blocks, and any line that is not
crystal clear. The worst comments are those that say “move AX to
BX” on a MOV instruction! Reasonable commenting practices
will yield about one comment on every other line of assembly
code.

Though it’s useful to highlight sections of comments with string’s
of asterisks, never have characters on the right side of a block of
comments. It’s too much trouble to maintain proper spacing as the
comments later change. In other words, this is not allowed:

/**
* This comment incorrectly uses right-hand *
* asterisks *
**/

The correct form is:
/**
* This comment does not use right-hand
* asterisks
***/

Firmware Development Standard

Page 15
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Coding Conventions
General
No line may ever be more than 80 characters.

Don't use absolute path names when including header files. Use
the form #include <module/name> to get public header
files from a standard place.

Never, ever use “magic numbers”. Instead, first understand where
the number comes from, then define it in a constant, and then
document your understanding of the number in the constant’s
declaration.

Spacing and Indentation
Put a space after every keyword, unless a semicolon is the next
character, but never between function names and the argument
list.

Put a space after each comma in argument lists and after the
semicolons separating expressions in a for statement.

Put a space before and after every binary operator (like +, -, etc.).
Never put a space between a unary operator and its operand (e.g.,
unary minus).

Put a space before and after pointer variants (star, ampersand) in
declarations. Precede pointer variants with a space, but have no
following space, in expressions.

Indent C code in increments of two spaces. That is, every indent
level is two, four, six, etc. spaces.

Always place the # in a preprocessor directive in column 1.

C Formatting
Never nest IF statements more than three deep; deep nesting
quickly becomes incomprehensible. It’s better to call a function,
or even better to replace complex Ifs with a SWITCH statement.

Place braces so the opening brace is the last thing on the line, and
place the closing brace first, like:
if (result > a_to_d) {
 do a bunch of stuff
}

Note that the closing brace is on a line of its own, except when it
is followed by a continuation of the same statement, such as:
do {
 body of the loop
} while (condition);

Firmware Development Standard

Page 16
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

When an if-else statement is nested in another if statement,
always put braces around the if-else to make the scope of the
first if clear.

When splitting a line of code, indent the second line like this:
function (float arg1, int arg2, long arg3,
 int arg4)
or,
if (long_variable_name && constant_of_some_sort == 2
 && another_condition)

Use too many parenthesis. Never let the compiler resolve
precedence; explicitly declare precedence via parenthesis.

Never make assignments inside if statements. E.g., don't write:
if ((foo = (char *) malloc (sizeof *foo)) == 0)
 fatal ("virtual memory exhausted");

instead, write:
foo = (char *) malloc (sizeof *foo);
if (foo == 0)
 fatal ("virtual memory exhausted")

If you use #ifdef to select among a set of configuration options,
add a final #else clause containing a #error directive so that
the compiler will generate an error message if none of the options
has been defined:

#ifdef sun
#define USE_MOTIF
#elif hpux
#define USE_OPENLOOK
#else
#error unknown machine type
#endif

Assembly Formatting
Tab stops in assembly language are as follows:
• Tab 1: column 8
• Tab 2: column 16
• Tab 3: column 32

Note that these are all in increments of 8, for editors that don’t
support explicit tab settings. A large gap - 16 columns - is
between the operands and the comments.

Place labels on lines by themselves, like this:
label:

mov r1, r2 ; r1=pointer to I/O

Precede and follow comment blocks with semicolon lines:
;
; Comment block that shows how comments stand
; out from the code when preceded and followed by
; “blank” lines.
;

Never run a comment between lines of code. For example, do not
write like this:

mov r1, r2 ; Now we set r1 to the value
add r3, [data] ; we read back in read_ad

Instead, use either a comment block, or a line without an
instruction, like this:

mov r1, r2 ; Now we set r1 to the value
; we read back in read_ad

add r3, [data]

Be wary of macros. Though useful, macros can quickly obfuscate
meaning. Do pick very meaningful names for macros.

Firmware Development Standard

Page 17
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Tools
Computers
Do all PC-hosted development on machines running Windows 95
or NT only, to insure support for long file names, and to give a
common OS between all team members.

If development under a DOS environment is required, do it in a
Win 95/NT DOS window.

Maintain every bit of code under a version control system. In
addition, the current compiler, assembler, linker, locator (if any)
and debugger(s) will be checked into the VCS. Products have
lifetimes measured in years or even decades, while tools tend to
last months at best before new versions appear. It’s impossible to
recompile and retest all of the product code just because a new
compiler version is out, so you’ve got to save the toolchain, under
VCS lock and key.

The only downside of including tools in the VCS files is the
additional disk space required. Disks are cheap; when more free
space is required simply buy a larger disk. It’s false economy to
limp by with inadequate disk space.

Compilers et al
Leave all compiler, assembler and linker warnings and error
message enabled. The module is unacceptable until it compiles

cleanly, with no errors or warning messages. In the future a
warning may puzzle a programmer, wasting time as he attempts to
decide if it’s important.

Write all C code to the ANSI standard. Never use vendor-defined
extensions, which create problems when changing compilers.

Never, ever, change the language’s syntax or specification via
macro substitutions.

Debugging
You have a choice: plan for bugs before writing the code, and
build a debuggable product, or (surprise!) find bugs during test in
a system that is impossible or difficult to troubleshoot. Expect
bugs, and be bug-proactive in your design.

If at all possible, in all systems with a parts cost over a handful of
dollars, allocate at least two, preferably more, parallel I/O bits to
troubleshooting. Use these bits to measure ISR time (set one high
on ISR entry and low on exit; measure time high on a scope), time
consumed by other functions, idle time, and even entry/exit to
functions.

If possible, include a spare serial port in the design. Then add a
monitor - preferably a commercial product, but at least a low-level
monitor that gives you some access to your code and hardware.

Firmware Development Standard

Page 18
© 1998, 2004 The Ganssle Group. This work may be used by anyone as a software standard. Publication rights reserved.

Debugging tools are notoriously problematic - unreliable, buggy,
with long repair times. As CPU speeds increase the problems
increase. Yet these tools are indispensable. Select a dual,
complementary, debugging toolchain: perhaps and emulator and a
monitor. Or an emulator and a background debugger. Be sure that
both sets of tools use a common GUI. This will minimize the time
needed to switch between tools, and will insure there will be no
file conversion problems (debuggers use many hundreds of
incompatible debug file formats).

When selecting tools, evaluate the following items:
• Support - is the vendor responsive and knowledgeable? Is the

vendor likely to be around in a few months or years? If the
unit fails, what is the guaranteed repair time?

• Intrusion - how much does the tool intrude on the system’s
operation? What is the impact on debugging strategies and
development time?

• Does the tool run at full target speed, or will you have to slow
things down? What is the impact?

• Will the mechanical connection between the tool and the
target be reliable? It’s quite tough to get a decent connection
to many modern SMT and BGA processors.

• Interrupts/DMA - Will the tool let you debug ISRs? Are
interrupts/DMA ever disabled unexpectedly? If the tool does
not respond to interrupts/DMA when stopped at a breakpoint
(very common), will this have a deleterious effect on your
debugging?

• Tasking - If the product uses a RTOS, the tool must provide
some support for that RTOS. Insure that the debugger itself is
aware of the RTOS, and can display important task constructs
in a high-level format. What happens if you set a breakpoint

on a task - do the others continue to run? If not, what impact
will this have on your development?

• Internal Peripherals - Is the tool aware of the CPU’s internal
peripherals? Many are; they let you look at the function of the
peripherals at a very high level. Do timers stop running at a
breakpoint (common)? Will this cause development problem?

Be wary of doing all of your development with the tool’s
downloader. Burn a ROM from time to time to make sure the code
itself runs properly from ROM, and to insure the product properly
addresses the ROMs.

Leave all debugging resources in the product when it ships.
Disable them via a software flag so they lie latent, ready for action
in case of a problem. Remember the Mars Pathfinder: JPL
diagnosed and fixed a priority inversion bug while the unit was on
Mars, using the RTOS’s trace debug feature, which had been left
in the product.

(Also remember that the development team saw the bug twice on
Earth, before launch. They attributed it to a “glitch”. There are no
glitches; computers are deterministic systems.)

