A Boss’s Guide to Software
Process Improvement

Jack G. Ganssle
jack@ganssle.com

The Ganssle Group
PO Box 38346
Baltimore, MD 21231
(410) 496-3647

fax (647) 439-1454

A Boss’s Guide to Software Process Improvement

| hear from plenty of readers that their bossesjust don't “get” software. Effortsto ingtitute even
limited methods to produce better code are thwarted by well-meaning but uninformed managers
chanting the “can’t you just write more code?’ mantra.

Y et when | talk to the bosses many admit they smply don’t know the rules of the game.
Software engineering isn't like building widgets or designing circuit boards. The disciplines are
quite different, techniques and tools vary, and the people themsdlves dl too often quirky and
resstant to sandard management ploys. Most haven't the time or patience to study dry tomes
or keep up with the stlandard journas. So here’ s my short-intro to the subject. Giveit to your
boss.

Dear boss:. thefirst message is one you dready know. Firmware is the most expensve thing in
the universe. Building embedded code will burn through your engineering budget a arate
matched only by a young gold-digger enjoying her barely- sentient ancient billionaire s fortune.

Most commercia firmware costs around $15 to $30 per line, measured from the gart of a
project till it's shipped. When developerstdll you they can “code that puppy over the weekend”
be very afraid. When they estimate $5/line, they’re on drugs or not thinking clearly. Defense
work with its attendant reams of documentation might run upwards of $100 per line or more;
the space shuttle code is closer to $1000 per line, but is without a doubt the best code ever
written.

$15-$30 per line trandaesinto asix figure budget for evenatiny 5k line application. The mord:
embarking on any development endeavor without a clear strategy is a sure path to squandering
vad sums.

Like the company that asked me to evauate a project that was 5 years late and looked more
hopeless every day. | recommended they trash the $40m effort and start over, which they did.
Or the startup which, despite my best efforts to convince them otherwise, believed the
consultants' insandy optimigtic schedule. They’re now out of business - the startup, that is. The
consultants are thriving.

Version Control

Firgt, before even thinking about building any sort of software, ingtal and have your people use
aversion control system (VCYS). Building even the samdlest project without aVCS is awaste of
time and an exercise in futility.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

The NEAR spacecraft dumped a greet dedl of itsfud and was nearly lost when an
accelerometer transent caused the on-board firmware to execute abort code. .. incorrect abort
code, software that had never redlly been tested. Two versons of the 1.11 flight software
exigted; unhappily, the wrong set flew. The code was maintained on uncontrolled servers.
Anyone could, and did, change the software. Without adequate version control, it wasn't clear
what made up correct shipping software.

A properly deployed VCS insures these sorts of dumb mistakes just don't happen. The VCSis
asort of database for software, releasing the code to users but tracking who changed what
when. Why did the latest set of changes break working code? The VCS will report what
changed, who did it, and when, giving the team a chance to efficiently troubleshoot things.

Maybe you' re shipping release 2.34, but one user desperately requiresthe old 2.1 software.
Perhaps a bug snuck in sometime in the last 10 versions and you need to know which code is
safe. A VCS recongtructs any verson a any time.

Have you ever misplaced code? In October of 1999 the FAA announced they had lost the
source code to dl of the software that controlled air traffic between Chicago and the regiond
arports. The code dl lived on one developer’ s machine, one angry person who quit and deleted
it dl. He did, however, ingdl it on his home computer, encrypted. The FBI spent 6 months
reverse engineering the encryption key to get their code back. Sound like disciplined software
development? Maybe not.

Without a VCS, afailure of any engineer’s computer will mean you lose code, sinceit’ sdl
inevitably scattered around amongst the developmernt team. Theft or afire — unhappily everyday
occurrences in the red world — might bankrupt you. The computers have little vaue, but that
source code is worth millions.

The version control database — the centrd repostory of dl of your vauable software — liveson
asngle sarver. Daily backups of that machine, stored offsite, insures your business' s surviva
despite dmost any cdamity.

Some developers complain that the VCS won't protect them from lazy programmers who chest
the system. Y ou or your team lead should audit the VCS' s logs occasiondly to be sure
developers aren't checking out modules and leaving them on their own computers. A report that
takes just seconds to produce will tell you who hasn't checked in code, and how long it has
been out on their own computers.

Verson control systems range in price from free (like the GNU products) to expensive, but
even the expensive ones are cheap. See
http://mwww.codeorganizer.com/version_control/tools.htm for a comprehensive list of products.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

Firmware Standards

What language is gpoken in America? English of course, but try talking to random strangers on
adreet corner in Batimore today. The diadects range from educated middle- American to
incomprehengble near-gibberish. 1t sal English, of a sort, but it sounds more like the falout
from the Tower of Babd.

In the firmware world we speak a common language: C, C++ or assembly, usudly. Yet there's
no common diaect; developers exploit different aspects of the lingos, or construct their
programs using legd but confusing constructs.

The purpose of software isto work, of course, but aso to clearly communicate the
programmer’ s intentions to maintenance people. Clear communications meanswe must al use
amilar didects. Someone — that’ s you, boss — must specify the didect.

Op B,
D, i=6,Z ,58=0,v=
0, n=0, T=400 ,H=300,a[7]
={ 33,99, 165, 231,207,363}
EGCValues G={ 6,0 ,~0L,0,1} ; short
T[1={ 0,300,-z20,0,4 ,—-20,4,10,4,-5,4,5,
4,-20,4,20,4,-5,4,5,4, -10,4,20},b[]1={ 0,0,4,
0,-4,4,-4,-4,4,-4,4,4} ; C L[z22],I[222]:dC(0 x){
MiT,a[=x],H,12); } Ne(C L,0 51 {1 1l.f=l.a=1; l.b=l.u=s:
l.t=16; l.e=0; T: } nLid £,0 a,0 h,0 x,0 v,0 5,0 p)d C 1:
l.d=0; l.f=3; l.t=t; y-=1l.c=h; l.e=t==27x:p; x-=l.s=a;s=(x|1)
52%%; L=(¥|1l)%52%y; l.u=(a=s>t?s: T)F>r9:l.a=(x<<9) far l.h=(y<<9) fa;

U: } di(C I){ O p,q,r,s,i=222:C 1; B=D=0; R i--){ 1=L[i]:; ¥>7){ p=I.s
=1l.2»>»9; g=T.c-l.c>»9; r=1.t==571.h: l.a: s=p*p+g¥g: if(s<r*r||I.c==2&&s<
26) F S+=10; s=(20<<9)/(=|1); B+=p*s; D4=g#s; +} F O; + hif{0 x,0 d){ O i=i;

R i-—-g&i(x<al[i]-d| |x>=al[i]+d)); F 1i; } dL{){ O c,r=0, 1=2Z22,h; C 1; R i--){ 1=L[i]:
i r++;e=1.£f; ¥==3){c=l.u; l.t=0; E: IR oc——14{-- l.uyh=1.cx>9; V=71 {EZDravire (d,w, d,
{l.2339)—++l.a,h-1.a,1l.a%2, l.a%2,0 ,O0<<8): if ('Ll u)d I[i].t-=8; 1=I[i]; } } else ¥Y==2)M
(b,1.8»»9,h,86); else ElrawFoint (d LW, g, [Los+=1l.a) >3, h=(l.c+=1.h1>>3); T==4&&!l.u){ Ne
(1,20); K: } Ve&&l.t<3g&(di(l)||h> H)){ if(h»H&&(c=hi| 1.5>»9,25))1>=0){ dCic): a[c]=a[--
Al: ¥MNe(l,30): YT==11{ E:K: } else c=1l.t=0:;} ¥==1l&&h<H =TE5E&!'N(p*77)1){ doi{ nL(l,1.5,1.c,

M{W<<D) ,He<O, 1, i+
1) I[i].d++;
YR N(3)

1 E;
l.u=se; e=0; } ¥
==214{ l.=s4+=1.a+E;
l.a= (l.e-l.=)/((H+
z0-hj|1); l.c+=1.b+D;
Mib,l.3>>9,l.cx>9,6); 1}
Y LLil=1l; ¥ + F r: ¥ J(}{
R 4) { EFlush(d); wv&&sleep|
3): Is++vFl0; p=50-v; viZeghi
{(a[k]=N{W-50) +25) ,50) <0 &&h++;
IClearWindow (d,w); for(B=0; B<k:
AC({B++)); R Z|dL({)){ Z&g!Wip) £&(Z-—
COL 1+ (p) , M (T<<9), O,N(W<<9),H<<3,1
L0170 usleep(p*200); ECheckMaskEwvent (d,
4, ge) Ehce——Scenl (4, a[N (A)]<<9, H-10<<9, e,
xhutton.x<<9%9,e.xbutton. y<<9,5,0) ; }3+=4+100;
B=sprintfim,Q,v,3); XDrawitring(d,w
.o, W3,H/2,mB): } }

Figure 1: Real C code... but what dialect? Who can understand this?

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

The C and C++ languages are s0 conducive to abuse that there’ s ayearly obfuscated C contest
whose goal isto produce utterly obscure but working code. Figure 1 is an excerpt from one
wining entry; thisisred, working, but utterly incomprehensible code. Everyone wants the URL
to see other bizarre entries, but forget it! These people are code terrorists who should be hunted
down and shot like the animalsthey are! VVow that your group will produce world-class
software that’ s chegp to maintain.

The code won't be readable unless we use constructs that don’t cause our eyesto trip and
sumble over unusud indentation, brace placement and the like. That means setting rules, a
standard, used to guide the creation of al new code.

The standard defines far more than styligtic issues. Deegply nested conditiondls, for instance, lead
to far more many testing permutations than any norma person can manage. So the standard
limits nesting. It specifies naming conventions for variables, promating identifiersthat havered
meaning. Tired of seeing |, ii, and (my persond favorite) iii for loop variable names? The
standard outlaws such lazy practices. Rules define how to condtruct useful comments.
Comments are an integral and essentid part of the source code, every bit asimportant as for
and while loops. Replace or retrain any team member who clams to write “sdf commenting
code’.

Some devel opers use the excuse that it's too time consuming to produce a standard. Plenty
exig on the net; mineisin Word doc format a www.gansde.com/misc/fsm.doc. It contains the
brace placement rule that infuriates the most people... so you'll change it and make it your own.

So write or get afirmware standard. And boss, please work with your folks to make sure all
new code follows the standard.

Code Inspections
What's the chegpest way to get rid of bugs? Why, just don't put any in!

Trite, perhaps, yet there' s more than agrain of wisdom there. Too many developers crank lots
of code fadt, and then spend ages fixing their mistakes. The average project eats 50% of the
schedule in debugging and test! Reduce debugging, by inserting fewer bugs, and accelerate the
schedule.

Ingpect al new code. That is, use aforma process that puts every function in front of a group of
developers before they spend any time debugging. The best ingpections use ateam of about 4
people who examine every line of Cin detall. They'll find most of the bugs before testing.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

Study after study shows ingpections are 20 times chegper a& diminating bugs than debugging.
Maybe you're suspicious of the numbers— fine, divide by an order of magnitude. Inspections
dill shine, cutting debugging in half.

More compellingly it turns out that most debugging strategies never check haf the code. Things
like deeply-nested | F statements and exception handlers are tough to test. My collection of
embedded disasters shows asmilar disturbing pattern: most ssem from poorly executed, pretty
much untested error handlers.

Inspections and firmware standards go hand in hand. Neither works without the other. The
ingpections insure programmers code to the standard, and the standard eliminates inspection-
time arguments over stylistic issues. If the code meets the sandard, then no debates about
software styles are permitted.

Most developers hate inspections. Tough. You'll hear complaints thet they take too long.
Wrong. Wél-paced inspection meetings examine 150 lines of code per hour, arate that's
hardly difficult to maintain (that's 2.5 lines of C per minute), yet that costs the company only a
buck or so per line. Assuming, of course, that the inspection has no vaue at al, which we know
issmply not true.

Your role, boss, is to grease the skids so the team efficiently cranks out fabulous software.
Inspections are avita part of that process. They won't replace debugging, but will find most of

the bugs very chegply.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

2
1.9 A
1.8 -
1.7 A
1.6 A
1.5 4
1.4
1.3 1
1.2 A
1.1 -

1 i T T T T T T T T T T T T T T T T T T T

\‘LV‘Q‘O’\Q,@

Schedule Divider

SECENVEE -
Code Inspection Effectiveness

Figure 2: Shaving the schedule with code inspections.

Origindly | said code ingpections are 20 times chegper than debugging. That' s quiteaclam!
Fgure 2 shows how that a 20x, given that debugging typicaly consumes haf the schedule,
using inspections effectively lets you divide the schedule by 1.9.

Don't believe the 20x factor? Divide it by an order of magnitude. Figure 2 shows even & that
pessmidtic figure you can divide the schedule by 1.3.

Have your people look into ingpections closdy. The classic reference is Software Inspection
by Gilb and Graham (Addison-Wesley, NY NY; 1993, ISBN 0201631814), but Karl
Wiegers newer and much more readable book Peer Reviews in Software (Addison-Wedley,
NY NY, 2001, ISBN 0-201-73485-0) targets teams of dl sizes (including solo programmers).

Chuck Crap

Toss out bad code.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

A little bit of the software is respongible for most of the debugging headaches. When your
developers are afraid to make the smallest change to amodule, that’' sasure Sgnit’stimeto
rewrite the offending code.

Developers tend to accept their mistakes, to attempt to beet lousy code into submission. It'sa
wadte of time and energy. Barry Boehm showed in Software Engineering Economics that the
crummy modules consume 4 times the development effort of any other module.

Identify bad sections early, before wasting too much time on them, and then recode. Count bug
rates using bug tracking software. Histogram the numbers occasondly to find those functions
whose error rates scream “fix me!”... and have the team recode.

Figure on tossing out about 5% of the system. Remember that Boehm showed thisis much
chegper than trying to fix it.

Don't beat your folks up for the occasiona function that’s a bloody mess. They may have
screwed up, but have learned alot about what should have been done. Use the experience asa
chanceto creete akiller implementation of the function, now thet the issues are clearly
understood. Hedlthy teams use mistakes as learning experiences.

Use bug tracking software, such as the free bugalla (http:/ Avww.bugzillaorg/), or any of dozens
of commercid products (nice list at http://Awww.aptest.com/resources.html).

Even the most disciplined developers sometimes do horrible thingsin the last few weeks to get
the device out the door. Though no one condones these actions, fact isthat quick hacks happen
in the mad rush to ship. That'slife. It'sdso death for software.

Quick hacks tend to accumulate. Version 1.0 is pretty clean, but the evil inflicted in the last few
weeks of the project add to problems induced in 1.1, multiplied by an ever-increasing series of
hacks added to every release. Pretty soon the programming team says things like “we can't
maintain this junk anymore.” Then it' s too late to take corrective action.

Acknowledge that some horrible things happened in the shipping mania. But before adding
features or fixing bugs in the next release, give the devel operstime to clean up the mess. Pay
back the technical debt they incurred in the previous verson’s end game. Otherwise these hacks
will haunt the system forever, reduce overdl productivity as the team struggles with the lousy
code in each maintenance cycle, and eventudly cause the code to rot to the point of

usel essness.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

Tools

A poll on embedded.com (http://embedded.com/poll Archive/2surveyno=12900001) suggests
85% of companies won't spend more than $1k on any but the most essentia tools. Congdering
the $100k+ loaded cost of a single engineer, it's nuts to not spend afew grand on atool that
offers even asmdl productivity boost.

Likewhat? Lint, for one. Lint isaprogram that examines the source code and identifies
suspicious aress. It slike the compiler’s syntax checker, but one on steroids. Only Lint is smart
enough to watch variable and function usage across multiple files. Compilers can't do that.
Aggressve Lint usage picks out many problems before debugging sarts, for afraction of the
cost. Lint dl source files before doing code ingpections.

Gimpd (www.gimpel.com) sells one for $239. It’s up to you to buy it, and to insure your
engineersuse it on al new code. Lint isannoying a fird, often initidly zeroing in on congtructs
that areindeed fine. Don't let that quirk turn your people off. Tameit, and then regp great
reductions in debugging times.

Debugging eats 50% of most projects schedules. The average developer has a5 to 10% error
rate. Anything that trims that even a smidgen saves big bucks.

Make sure the developers aren’t chegting their tools. Warning levels on compilers, for instance,
should be et to the lowest possible level so dl warnings are displayed. And then ingst the team
writes warning-free code. It's astonishing how we ship firmware that spews warnings when
compiled. The compiler, which understands the language' s syntax far better than any of your
people, isin effect shouting “Look here. Here! Thisis scary!” How can anyone ignore such a

compdling danger Sgn?

Write warning-free code so that maintenance people in months or decades won't be baffled by
the messages. “Isit supposed to do this? Or did | reingall the compiler incorrectly? Which of
theseisimportant?’ This means changing the way they write C. Use explicit casting. Parenthes's
when there’ s any doubt. These are dl good programming practices anyway, with zero cost in
engineering, execution speed, or code size. What' s the downside?

Editors, compilers, linkers, and debuggers are essential and nor+negotiable tools asit’s
impossible to do any development without these. Consider others. Complexity andlyzers can
yield tremendous insight into functions, identifying “bad code’ early, before the team wastes
their time and spirits trying to beat the cruddy code into submission. See www.chris-
lott.org/resources/cmetrice for alist of freebies. Bug tracking software helps identify problem
areas— see alist of resources at http://www.aptest.com/resources.html.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

Mogt firmware developers are desperate for better debugging tools. Unhappily, the grand old
days of in-circuit emulators are over. These tools provided deep indght into the intrinsicaly
hard-to- probe embedded system. Their replacement, the BDM, offersfar less capability. Have
mercy on your folks and insst the hardware team dedicate a couple of spare paralel output bits
just to the software people. They’ll use these dong with instrumented code for amyriad of
debugging tasks, especidly for hard-to-measure performance issues.

Peopleware

Y our devel opers — not tools, not widgets, not components - are your prime resource. As one
wag noted, “my inventory walks out the door each night.”

I’ve recommended several books. Please, though, read Peopleware by DeMarco and Lister
(ISBN 0932633439, 1999 Dorset House Publishing, NY NY). It sadender volume that you'll
plow through in just a couple of enjoyable hours. Pursuing the e usive underpinnings of software
productivity, for 10 years the authors conducted a“ coding war” between volunteering
companies.

The results? Well, at first the data was a scrambled mess. Nothing correlated. Teams that
excedlled on the projects (by any measure: speed, bug count, matching specs) were neither more
highly paid nor more experienced than the losers. Crunching every parameter reveded the
answer: developersimprisoned in noisy cubicles, those who had no defense againgt frequent

interruptions, did poorly.

How poorly? The numbers are breathtaking. The best quartile was 300% more productive than
the lowest 25%. Y et privacy was the only difference between the groups.

Think about it —would you like 3x faster development?

It takes your developers 15 minutes, on average, to move from active perception of the office
busyness to being totally and productively engaged in the cyberworld of coding. Yet amere 11
minutes passes between interruptions for the average developer. Ever wonder why firmware
costs so much? Email, the phone, people looking for coffee filters and sometimes you, boss, dl
clamor for atention

Sadly, most developers live in cubicles today, which are, as Dilbert so astutely noted, “ anti-
productivity pods’. Next time you hire someone peer into his cube occasondly. At first he's
anxious to work hard, focus, and crank out a great product. He' Il try to tune out the poor sod in
the next cube who' s jabbering on the phone with his lawyer about the divorce. But we're all
human; after aweek or so he' s leaning back from the keyboard, ears raised to get the latest
developments. A productive environment? Nope.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

| advise you to put your developersin private offices, with doors and off-switches on the
phones. Y ou probably won't do that. Every time I’ ve fought this battle with management I’ ve
logt, usudly because the interior designers promise cubes offer more “flexibility”. But even
cubicles have options.

Encourage your people to identify their most productive hours, that time of day when their
brains are engaged and working at max efficiency. Me, I'm amorning person. Others have
different habits. But find those productive hours and help them shield themselves from
interruptions for about three hours aday. In that short time, with the 3x productivity boogt,
they’ll get an entire day’ s work done. The other five hours can be used for meetings, email,
phone contacts, supporting other projects, etc.

Give your folks acurtain to pull across the cube's opening. Obvioudy a curtain rod would
decapitate employees, generdly a bad idea despite the legions of unemployed engineers
clamoring for work. Use a Vel cro strip to secure the curtain in place. Put asign on the curtain
labeled “enter and di€’; the Sign and curtain go up during the employee' s 3 superprogramming
hours per day. Train the team to respect their colleagues privacy during these quiet hours. At
first they'll be frantic: “but I've GOT to know the input parametersto thisfunction or I'm
guck!” With time they’ll learn when Joe, Mary or Bob will be busy and plan ahead. Smilarly, if
you redly need a project update and Shirley has her curtain up, back dowly and quietly away.
Wait till their hours of Slence are over.

Have them turn off their phone during thistime. If Mary’ s spouse needs her to pick up milk on
the way home, well, that's perfect voicemail fodder. If the kids are in the hospitd, then the
phone attendant can break in on her quiet time.

The study took place before email was common. Y ou know, that cute little bleep that derts you
to the sametired old joke that’ s been circulating around the ‘ net for the last three months. ..
while diverting attention from the problem at hand. Every few seconds, it seems. Tell your
people to disable email while cloistered.

When | tak to developers about the interruption curse they complain that the bossis the worst
offender. Resst the temptation to interrupt. Remember just how productive that personis at the
moment, and wait till the curtain comes down.

(If you're afraid the employee is hiding behind the curtain surfing the net or playing Doom, well,
there are far more severe problems than just productivity issues. Without trust — mutud trust —
any engineering department isin trouble).

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

Other Tidbits

Where should you use your best people? It's naturad to put the superprogrammers on the
biggest and most complex projects. Ress that urge — it’swrong.

Capers Jones showed that the best people excel on smal (one man-month) projects, typicaly
being 6 times more productive than the worst members of the team. That advantage diminishes
as the system grows. On an 8 man-month effort the ratio shrinks to under 3to 1. At 64 man+
monthsit's about 1.5 to 1, and much beyond that the best do as badly as the worst. Or the
worst as well as the best. Whatever.

That observation tdlls us something important about how we partition big projects. Find waysto
breek big systems down into many smdl, mostly independent parts. Or at least strip out as
much as possible from the huge carcass of code you're planning to generate, putting the
removed sections into their own tasks or even separate processors. Give these smaller sections
to the superprogrammers. They'll crank out solutions fast.

An example: suppose an 1/0 device, say an optica encoder, istied to your system. Removeit.
Add aCPU, achesp PIC, ATMEL, Z8 or smilar sub-$1 part, just to manage that one device.
Have it return its data in engineering units. “the shaft angleis 27 degrees’. Even adowly rotating
encoder would generate thousands of interrupts a second, a burden to even the fastest CPU
that' s dso tasked with amany other activities. Y et even atiny microcontroller can easilly handle
the dataif ther€ s nothing else going on. One smart developer can crank out perfect I/0O codein
little time.

(An important rule of thumb states that 90% loaded systems double development time,
compared to one of 70% or less; 95% loading triples development time.)

While cleverly partitioning the project for the sake of accelerating the development schedule,
think like the customer does, not as the firmware folks do. The customer only sees features,
never objects, ISRs or functions. Features are what sl the product.

That means break the development effort down into feature-chunks. The first fegture of dl, of
course, isasimple skeleton that sets up the peripheras and gets to main(). That and afew
critical 1SRs, perhaps an RTOS and the like form the backbone upon which everything dseis
built.

Beyond the backbone are the things the customer will see. In adigita camerathere sahandler
for the CCD, an LCD subsystem, some sort of Flash filesystem. Cooal tricks like image
enhancement, digita zoom, and much more will be the Szzle that excites marketing. None of
those, of course, has much to do with the basic camera functiondlity.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

A Boss’s Guide to Software Process Improvement

Cregte aligt of the features and prioritize. What's most important? Least? Then... and thisisthe
trick... implement the most important features fird.

Doesthat sound trite? It is, yet every time | look a a product in trouble no one has taken this
gep. Developers have virtualy every festure haf-implemented. The ship date arrives and
nothing works. Worse, there’ s no clear recovery srategy since so much effort has been
expended on things that are not terribly important.

S0 in a panic management starts tossing out features. One 2002 study showed that 74% of
projects wind up with 30% or more of the features being diminated. Not only isthat aterrible
waste — these are partidly implemented features — but the product goes to market late, with a
subset of its functiondity. If the system were built as I’m recommending, even schedule
dippages would, a worgt, result in scrubbing a few requirements that had as yet not consumed
engineering time. Falure, sure, but failure in arather successful way.

Findly, did you know great code, the redlly good stuff, that which has the highest riability,
costs the same as cruddy software? This goes against common sense. Of course, dl things being
equd, highly safety critical code is much more expensive that consumer-qudlity junk.

But what if we don’'t hold al things equa? O. Benediktsson (Safety Critical Software and
Development Productivity, conference proceedings, Second World Conference on Software
Quadlity, Sept 2000) showed that using higher and higher levels of disciplined software process
lets one build higher-rdl software at a constant cost. If your projects march from low reliability
along an upwards line to truly safety-critica code, and if your outfit follows, in his study,
increasing levels of the Capability Maturity Modd, the cost remains congtant.

Makes one think. And hopefully, it makes one reign in the hackers who are more focused on
cranking code than specifying, designing, and carefully implementing a world-class product.

© 2004 The Ganssle Group. This work may be used by individuals and companies, but all
publication rights reserved.

Better Firmware... Faster!

A One-Day Seminar

Nov. 1st, Boston

Dec. 10, Las Vegas

Presented by Jack
Ganssle, technical
editor of Embedded
Systems Programming
Magazine, author of The
Art of Developing
Embedded Systems, The
Art of Programming
Embedded Systems, The
Firmware Handbook, and
The Embedded Systems
Dictionary

Registration form inside;
more information at
www.ganssle.com

Limited seating; sign up
now and guarantee a
spot .

The Ganssle Group
PO Box 38346
Baltimore, MD 21231
(410) 496-3647
fax: (647) 439-1454

register@ganssle.com
Www.ganssle.com

For Engineers and Programmers

This seminar will teach you new ways to build higher
guality products in half the time.

80% of all embedded systems are delivered late...

Sure, you can put in more hours. Be a hero. But working harder is not a
sustainable way to meet schedules. W€l show you how to plug productivity
lesks. How to manage cregping featurism. And ways to baance the conflicting
forces of schedules, qudity and functiondlity.

... yetit’s not hard to double development productivity

Firmware is the most expensve thing in the universe, yet we do little to contral its
costs. Mogt teams deliver late, take the heat for missng the deadline, and start the
next project having learned nothing from the last. Strangdly, experience is not
correlated with fast. But knowledge is, and we'll give you the information you need
to build code more efficiently, gleaned from hundreds of embedded projects around
the world.

Bugs are the #1 cause of late projects...

New code generaly has 50 to 100 bugs per thousand lines. Traditiona debugging is
the dowest way to find bugs. We Il teach you better techniques proven to be up to
20 times more efficient. And show smple tools that find the nightmarish red-time
problems unique to embedded systems.

... followed by poor scheduling

Though capricious schedules assigned without regard for the workload are common,
even devel opers who make an honest effort usudly fal. We'll show you how to
decompose a product into schedulable units, and use techniques like Wideband
Delphi to create more accurate estimates.

Learn From The Industry’s Guru

Spend a day with Jack Gansde, well-known author of the most popular books on
embedded systems, technicd editor and columnig for Embedded Systems
Programming, and designer of over 100 embedded products. You'll learn new ways
to produce projects fast without sacrificing qudity. This seminar is the only non
vendor training event that shows you practical solutions that you can implement
immediately. We'll cover technica issues — like how to write embedded drivers
and isolate performance problems — as well as practica process idess, induding
how to manage your people and projects.

Seminar Leader

r)

industry’ s standard reference works

Jack Gansdle has written over 500 articles in Embedded Systems Programming, EDN, and other magazines.
Hisfour books, The Art of Programming Embedded Systems, The Art of Developing Embedded
Systems, The Embedded Systems Dictionary, and, his most recent, The Firmwar e Handbook, are the

Jack lectures internationally at conferences and to businesses, and was last year’ s keynote speaker at the Embedded
Systems Conference. He founded three companies, including one of the largest embedded tool providers. His extensive
product development experience forged his unique gpproach to building better firmware faster.

Jack has helped over 600 companies and thousands of developers improve ther firmware and consstently deliver better

products on-time and on-budget.

Course Outline

Languages

C, C++ or Java?

Code reuse —amyth? How can you benefit?

Stacks and heaps— deadly resources you can control.
Structuring Embedded Systems

Manage features... or miss the schedule!

Do commercial RTOSes make sense?

Five design schemes for faster development.
Overcoming Deadline Madness

Negotiate realistic deadlines... or deliver late.

Scheduling — the science versus the art.

Overcoming the biggest productivity busters.
Stamp Out Bugs!

Unhappy truths of ICEs, BDMs, and debuggers.
Managing bugs to get good code fast.

Quick code inspections that keep the schedul e on-track.

Cool waysto find hardware/software glitches.

Managing Real-Time Code

Design predictabl e real-time code.

Preventing system performance debacles.
Troubleshooting and eliminating erratic crashes.
Build better interrupt handlers.

Interfacing to Hardware

Understanding high-speed signal problems.
Building peripheral driversfaster.
Cheap — and expensive —ways to probe SMT parts.

How to Learn from Failures... and Successes

Embedded disasters, and what we can learn.
Using postmortems to accelerate the product delivery.
Seven step plan to firmware success.

60

50 A

0 A
[

Probability

v

30 l/\
o VAR
[\

10 INVAN
JARAN

0 LINLINL I B N |

PPECILPSSFP IS

Microseconds

Do those C/C++ runtime routines execute in a usec or a week?
Thistrig functionisall over the map, from 6 to 15 msec. You'll
learn to rewrite real-time code proactively, anticipation timing
issues before debugging.

Why Take This Course?

Frusrated with schedule dippages? Bugs driving you
batty? Product quality sub-par? Can you afford not to
takethis class?

We'll teach you how to get your products to market
fagter with fewer defects. Our recommendations are
practical, useful today, and tightly focused on
embedded system development. Don't expect to hear
aother dever but ultimately discarded software
methodology. You'll aso teake home a 150-page

handbook with agorithms, idess and solutions to common embedded problems.

Registration Form on Last Page

Hereiswhat some
of our attendees
have said:

Thanks for a great seminar. We really enjoyed it! We're already putting the ideas you
gave us to use.
J. Sargent, CSC

| like your practical, no nonsense advice backed up with numbers, your dynamic presentation style, and the nice
handout that you gave us. | will definitely recommend your seminar to other programmers.
Ed Chehovin, US Navy

| just wanted to say thanks for a great seminar last week. Already the information you gave has proven useful — |
used that ISR trick and we finally found an error we' ve been chasing for months.
Sandeep Miran

Thank you so much for a great class! Now my co-workers think I’ mthe guru!
Dana Woodring, Northrup Grumman

Did you know that...

... doubling the size of the code results in much more than twice the work? In this seminar you'll learn ways unique
to embedded systems to partition your firmware to keep schedules from skyrocketing out of control.

.. you can reduce bugs by an order of magnitude before starting debugging? Most firmware starts off with a5
10% error rate — 500 or more bugs in alittle 10k LOC program. Imagine the impact finding al those has on the

schedule! Learn smple solutions that don't require revol utionizing the engineering department.

.. you can create a predictablereal-time design? This class will show you how to messure the system'’ s performance,
manage reentrancy, and implement 1SRs with the least amount of pain. You'll even study red timing data for

common C constructs on various CPUs.

.. & 20% reduction in processor loading slashes development time? Learn to keep loading low while smplifying
overd|l sysemdesgn.

.. few watchdog timers are properly implemented? Most are partid solutions to acomplex problem. W€ Il show you
how to build an awesome WDT.

.. most interrupt-driven timers are improperly coded? Subtle asynchronous issues dways lead to erratic timer reads
and crashes. The solutions are not obvious, but easy to implement.

.. reuseis usually a waste of time? Most companiesfal miserably at it. Though promoted as the solution to the
software criss, it's much tougher than advertised. You'll learn the ingredients of successful reuse.

Busy gchedule? « -

If you can’t take the time to travel, we can present this seminar at
your facility.

We will train all of your developers and focus on the challenges unique to
your products and team.

Thanks for avauable, pragmatic, and
informative lesson in embedded systems
design. All the attendees thought it was
well worth ther time,

Thanksfor the terrific
sminar here a
ALSTROM yesterday! It
got rave reviews from a
nrettv touah crowd.

Craig DeFilippo, Pitney Bowes

Cheryl Saks, ALSTROM

| just wanted to thank you again for the great class last week. With
no exceptions, dl of the feedback from the participants was

extremely postive. We look forward to incorporating many of the
suggestions and observations into making our work here more
efficent and higher qudity.

Contact us for info on how
we can bring this seminar
to your company.

Carol Batman, INDesign

e-mail: info@ganssle.com
or call us at 410-496-3647

What are you doing to upgrade your skills? What are you doing to help your engineers succeed?

Do you consstently produce quality firmware on schedule? 1f not . . .

it?

what are you doing about

Better Firmware... Faster!

A one-day class in 2 convenient locations

Boston — Nov. 1, 2004 - Sheraton Braintree Hotel
Las Vegas— Dec. 10, 2004 — Stardust Resort and Casino

Spend a day with Jack Ganssle, Embedded System Programming’s Technical Editor and
columnist, and learn new ways to get your products to market faster.

Registration Information

All of this, plus 150 pages of handouts, for just $895 per person. Plus you will receive a persondized certificate of

completion at the end of the course.

Groups of 3 or more registering together pay only $695 each.

Register early and save. First 15 people to sign up & each location will receive one rnight's hotd room included in the

price of the seminar.

Fax thisform to 647-439-1454. Or, register by phone at 410-496-3647 or viaemall to register@gansde.com.

Cancellations made more than 14 days prior
to the class are refundable less a $50 fee.
Cancellations made within 14 days are non
refundable, but are 100% transferable to dl
courses we offer.

Out of Town? Current
Roundtrip Fares:

To Boston on AirTran Airlinesfrom:
Atlanta, GA - $199.90
Chicago, IL - $302.50
Milwaukee, WI — $245.40
Rochester, NY - $241.40
Bdtimore, MD - $111.70

To Las Vegas on Southwest from:
San Jose, CA —184.90
Audin, TX - $248.70
Chicago, IL — $165.
LosAngdes, CA - $76.70
Cleveland, OH - $333.90

Today' sDate:

Name:

Company:

Mailing address.

City, State, Zip:

Phone: Extension:

Fax:
Emal:
L ocation:

Boston LasVegas

O Number of attendees:

O Purchase Order Attached. P.O. Number:

O Chargeto: OVisa O MasterCard O American Express
Card Number:

Name on Card:

Expires:

Sgnaure:
Fax thisto 647-439-1454. Or, call us at 410-496-3647.

