2= MITSUBISHI

ELECTRONIC DEVICE GROUP

M37515

M37515: INTEREACING WITH EEPROM USING I°C

Abstract

The following article will briefly discuss the synchronous serial I’c
protocol and the M37515 I°C/SMBuUs hardware implementation. A
discussion on the firmware structure and implementation on the
I°C interface to the serial EEprom and M37515 MCU.

Author: Howard Chan

1.0 Introduction

I’C is a simple serial bus for communication among
multiple hardware peripherals and devices in an
embedded system. The Mitsubishi M37515 is a 8-bit
MCU with an I’C/SMBus (System Management Bus)
interface. The M37515 is a popular device used in
keyboard controller and Smart battery applications. The
SMBus uses a subset of the I°C protocol which is
normally applied to power management applications like
Smart Battery. The SMBus protocol will not be
discussed in this article.

1.1 I°C: Description

I’C is a synchronous serial bus developed by Philips to
simplify embedded device communication design
between different peripherals. Many devices like
EEproms, ADCs, LCD drivers, FPGAs, etc support the
I’C bus protocol. These devices can communicate
through a 2-wire bus, with data transfer rates of
100Kbits/s to 400Kbits/s. The number of devices on the
bus is limited by the maximum bus capacitance of
400pF.

Most devices are used as slave devices while MCUs are
typically master devices. 1°C supports multi-mastering,
which means more than one device is allowed to control
the bus. I°C has collision detection and arbitration to
maintain data integrity. 1°C uses two lines, Serial Data
Address Line (SDA) and Serial Clock Line (SCL) .
These lines are bi-directional and are pulled-up high.

1.2 I°C: Protocol

I’C is a multi-master/slave protocol. All devices
connected on the bus must have an open-collector or
open-drain output. A transaction begins when the bus is
free (i.e. both SCL and SDA is high), a master may
initiate a transfer by generating a START condition.
Then the master sends an address byte that contains
the slave address and transfer direction. The addressed
slave device must then acknowledge the master. If the
transfer direction is from master to slave, the master
would becomes the transmitter and writes to the bus.
While the slave becomes the receiver and reads the
data and acknowledges the transmitter, and vice versa.
When the transfer is complete, the master sends a stop

condition and the bus becomes free. In both transfer
directions, the master generates the clock SCL and the
START/STOP conditions.

«——S,——>

SCL
Setup Hold
<« Time *“Time"
SDA i
(start condtion)
¢Semp*¢ Hold»

Time Time

SDA .
(stop condition)

Figure 1. Start/Stop conditions

The start condition is generated by a High to Low
transition in the SDA line during the High period of the
SCL line as shown in figure 1. A stop condition is
generated by a Low to High transition in the SDA during
the High period of the SCL line also shown in figure 1.

The number of bytes transferred per START/STOP
frame is unrestricted. Data bytes must be 8-bits long
with the most significant bit (MSB) first. Each valid data
bit sent to the SDA line must remain high for ‘1’ or low
for ‘0’ during the high period of the SCL, otherwise any
transition in the SDA line while SCL is high will be read
as a START/STOP condition as shown in figure 2.
Thus, transitions can only be made during the low period
of SCL.

An acknowledge bit must follow each byte. After the last
bit of the byte is sent, an ACK clock (acknowledgement
clock) is generated by the master (9" clock). An ACK
(acknowledge bit, low) must be sent by the receiver and
remain a stable low during the high period of the ACK
clock as shown in figure 2.

Start Stop

4 ~ condition conditon \
—— ——
1 2 8 9
SCL from Master ! L o

! Must remain stable
Soa P

/ during SCL High Clock

T ACKI]
NACK |
hﬂ)—ﬁom Transmitter Q \

From
Receiver

Figure 2. Data format

If the slave-receiver doesn't return an ACK (e.g. an error,
or is unable to receive the data), then the slave-receiver
device must leave the SDA line high (NACK). The
master will abort the transfer by generating a stop
condition. If the slave-receiver does return an ACK, but
sometime later it is unable to receive any more data.
Then the slave must generate a NACK (not
acknowledge, high) on the first byte to follow (see figure

Jul-98 Mitsubishi Electronics 1

APN7515N0498A

M37515: Interfacing with EEPROM using 12C

M37515

2). The slave will then need to keep the SDA line high
for the master to generate a stop condition.

If the receiver is the master and transfer is coming to an
end. Then the master needs to send a NACK after the
last byte is sent. The slave-transmitter must release the
SDA line to high to allow the master to generate a
START/STOP condition.

At the beginning of each transfer, the master generates
the start condition and then it sends a slave address.
The standard slave address is 7-bits followed by a
direction bit (8" bit, (R/#W)) as shown in figure 3. When
the direction bit is a WRITE (low or zero), the addressed
slave device becomes the receiver and the master
becomes the transmitter. When the direction bit is a
READ (high or one), the addressed slave device
becomes the transmitter and the master becomes the
receiver.

| s | Slave Address (7-bits) | w | A | DATA (8-bits) | A | DATA (8-bits) |A/N| 3 |

A master-transmitter transmit data to a slave-receiver

| s | Slave Address (7-bits) | R | A | DATA (8-bits) | A | DATA (8-bits) | N | P |

A master-receiver receives data from a slave-transmitter

S: START condition
W: Write bit (Low)
A: ACK bit

P: STOP condtion
R: Read bit (High)
N: NACK bit

D From Master to Slave

D From Slave to Master

Figure 3. I°C Address/data communication format (Spa)

2.0 Serial EEPROM Interface

The Serial EEPROM that will be used in this discussion
is the Microchip 24C01B. The EEPROM is an 8-pin
device that uses the I°C serial interface. The slave
address assigned to this device by the manufacturer is
1010XXX, where X = Don’'t Care. The serial EEPROM
supports several transfer modes such as: Byte Write,
Page Write, Current Address Read, Random Read, and
Sequential Read.

To perform a Byte Write, the master will generate a
start condition and send the slave address with the
direction bit set to HIGH as in Figure 4. When the slave

Control Byte

device matches the address, it will send an ACK to the
master during the 9" clock cycle. The next byte sent to
the EEPROM will be the word address that moves the
EEPROM's internal address pointer. Then the data sent
by the master will be written to the memory location
pointed by the EEPROM'’s address pointer. Finally the
master will generate a stop condition which will signal
the EEPROM to initiate the internal write cycle. At this
time the EEPROM will not generate any acknowledge
signals till the transaction is complete.

A Page Write is similar to a Byte Write, except the
master can transmit up to eight bytes before generating
a stop condition. Each byte sent to the device will
increment the address pointer for the next byte
transaction. The EEPROM stores the data to a eight byte
buffer, which is then written to memory after the device
has received a stop condtion from the Master (see figure
4).

Read operations are initiated the same way as a write
operation except the direction bit is set to READ. The
EEPROM maintains the address pointer from the last
byte accessed incremented by one. In a Current
Address Read transaction, the EEPROM acknowledges
the master after receiving the slave address and
transmits the data byte pointed by it's internal address
pointer (figure 5). The pointer is incremented by one for
the next transaction. Sequential Read behave the same
way as a Current Address Read transaction except data
is continually transmitted by the slave device till the
master generates a stop condition (figure 5). For
Random Read, the master generates the start condition
and sends the slave address with the direction bit set to
WRITE (figure 5). Then the next byte sent is the word
address to be accessed. This operations will change the
EEPROM internal address pointer. Then without
generating a stop condition, a Current Address Read or
Sequential Read transaction will follow. Notice that the
Current Address Read and Sequential Read transaction
will regenerate another Start condition as shown in figure
5.

y
A | Word Address | A |

s|1|0|1|0|x|x|x|w DATA |A|P|
Byte Write
Control Byte :
s|1|0|1|0|x|x|x|w A|W0rdAddress[n]|A| DATA [n] |A| DATA [n + 1] |A|__| DATA [n + 7] |A|P|

Page Write

S: START condition
W: Write bit (Low)
A: ACK bit

P: STOP condtion
R: Read bit (High)
N: NACK bit

I:l From Master to Slave

I:l From Slave to Master

Figure 4. Write transfer mode

Jul-98 Mitsubishi Electronics 2

APN7515N0498A

M37515: Interfacing with EEPROM using 12C M37515
" Control Byte v
S|1|0|1|0|X|X|X|R A| DATA |N|P|
Current Address Read
Control Byte 3 3 Control Byte 3
S|l|0|l|0|X|X|X|W A|WordAddress[n]|A S|1|0|1|0|X|X|X|R A| DATA [n] |N|P|

Random Read

| Control

Byte DATA [n]

|A| DATA [n + 1] |A| DATA [n + 2] |A|

| DATA [n + X] | N | P |

Sequential Read

S: START condition
W: Write bit (Low)
A: ACK bit

P: STOP condtion
R: Read bit (High)
N: NACK bit

I:' From Master to Slave

|:| From Slave to Master

Figure 5. Read Transfer Mode

3.1 Implementation: Hardware

The M37515 has a built-in multi-master 1°C/SMBus
peripheral. This interface conforms to the Philips I1°C-
BUS data transfer format and SMBus compliant. This
multi-master I°C interface consists of the address
register, the data shift register, status register and other
control circuits. The interface supports 10-bit and 7-bit
addressing format, High-speed (400KHz) and Standard
(100KHz) clock mode, Master transmission and
reception, and Slave Transmission and reception.

To interface the M37515 to the 24C01B serial EEPROM
simply requires connecting the SDA & SCL lines
together. The rest is done in firmware (see section 3.2).
Note that the transfer rate has been set as 100KHz, so a
10K pull-up is connected to the SDA line Additional
peripherals can be connected to the I°C bus, as long as
the total capacitance doesn’t exceed 400pF.

3.2 Implementation: Firmware

The firmware takes advantage of the M37515 I°C/SMBus
interface. The sample firmware will exercise the I°C
interface by interfacing with an external serial EEPROM.
The firmware will write a variable size block of data from
ROM to external EEPROM, then read the EEPROM to
ram. The main routine calls the routines WriteEEprom,
SeekEEprom and ReadEEprom. The routines format
the data that will be sent the EEPROM and then calls the
function MasterllC which sets up the I°C hardware and
starts the 1°C peripheral. An interrupt service routine
handles the transmit complete/received data interrupt.

The main routine initializes the MCU, Timers, and the 1°C
peripherals. Then it breaks the data to be written to the
EEPROM in 8 byte blocks, due to the limitations of the
EEPROM. Then it calls WriteEEprom and waits for the

function to complete. Then SeekEEprom is called to
move the EEPROM word address pointer to the address
to be read to ram. ReadEEprom is called to read the
EEPROM to memory.

Clear RXbuffer];
Y
A
Initialize MCU, Timers & 12C
function: F Move EEprom address pointer

Mcuinit(); to first to read.
Timerinit(); SeekEEprom(addr);
1ICinit(); F

Is Last Transaction

i < sizeof(data)? finished?

T T

A 4

i=i+8;
if more than 8 bytes
then size = 8;

else
size = remaining;

il F

Write to EEprom, with no more
than 8 bytes at a time:
WriteEEprom(data,addr,size);
Incement addr by size;

]

Read EEprom at current
address pointer.
ReadEEprom(RXbuffer,size);

Is Last Transaction
Finshed?

Wait
Forever

Figure 6. Software Flow Diagram of Main()

Jul-98 Mitsubishi Electronics 3

APN7515N0498A

M37515: Interfacing with EEPROM using 12C

M37515

The details of the firmware is outlined in the Software
Flow Diagrams shown on Figures 6, 7, & 8 and
commented on the source code listing on section 5.0.

disable interrupt; ‘

!

Set ACK timeout (timer 2)
"T2=1IC_Time"// 1 ms

I

Enable timer 2 interrupts
"T2REQ = 0;"
"T2EN = 0;"

I

Set Clk mode to 100 kHz &
Nack return mode
"S2 = 0xC5;"

'

Hold Scl to high
"S1 = 0x10;"

I

Disable I2C & set ports
"S1D = 0x50;"

'

Enable IIC interrupt
"IICREQ = 0;"
"lICEN = 1;"

'

Enable Interrupt; ‘

transaction
pending?

"ES0=0;"

Disable 12C

}

Hold Scl to High
"S1=0x10;"

}

"ESO=1;"

Reenable 12C

.

Set slave address & direction
"S0 = (slvaddr << 1) | (RW & 1);"

}

Send Start condition
"S1 = 0xFO;"

'

Set buffer info.
"buffer.address = (slvaddr <<
1) | (RW & 0x01);"
"buffer.size = datasize;"
"puffer.index = 0;"

=

transaction
pending?

Build EEprom static buffer.

Set EEprom address to first
data byte
"EEbuf[0] = address;"

Copy the data after 1st byte
"for(i=0; i<size && i <8; i++)
EEbuffi+1] = (char *)dstpr(i];"

}

Send EEbuf to MasterlIC in
write mode
"MasterlIC(EEbuf, (OXAO >>
1), size + 1, 0);"

"buffer.rxptr =(char *)dsptr;"

Set to read mode
"puffer.mode = 1;"
"buffer.rxpend = 1;"

Set to write mode
"puffer.mode = 0;"
"buffer.txpend = 1;"

"buffer.txptr = (char *)dsptr;"

Figure 7. Software Flow Diagram of I°C Functions

Return
MasterlIC

Jul-98

Mitsubishi Electronics

APN7515N0498A

M37515: Interfacing with EEPROM using 12C

M37515

SeekEEpr
om

Save address into static
variable
"data = address;"

disable interrupt

!

I

Disable 12C
"ESO =0;

Send address data to
MasterlIC in write mode
"MasterlIC(&data, (0XA0>>1),

:

Hold Scl to high

10" "S1 = 0x10;"
Enable 12C
Return "ESQ = 1+

MasterlIC

ReadEEpr
om

!

v

Set Slave address and
direciton
"S0 = buffer.address;"

:

Send Start condition
"S1 = 0xF0;"

Pass dsptr to read to
MasterlIC in read mode
"MasterlIC(&data, (0XAQ >>
1),1,0);"

v

Return
MasterlIC

Disable Timer2 interrupt
"T2EN = 0;"
renable interrupt

[

Set direction to RX

"TRX =0;"

v

disable interrupt

arbitration lost
(AL ==1)?

Set to Nack Return Mode

"S2 = 0xC5;"

l

Flush buffer with dummy write

"S0 = 0;"

Acknowledged
(LRB == 0)?

F

v

Enable Ack Polling (timer 2)
"T2REQ = 0;"
"T2EN = 1;"

Send stop condition
"S1=0xDO0;"

Read mode
(buffer.mode)?

1

Set direction to RX
"TRX =0;"

v

m

Write data to 12C shift register
"SO=buffer.txptr{buffer.index++];"

Send Stop contion
"S1=0xDO0;"

Dummy write to start read Read 12C shift register
clock buffer.rxptr[buffer.index++] =
"S0 = 0x00;" S0:
Transaction complete
¢ "buffer.txpend = 0;"
move to next state
"state = 1;* more data to
read T
index < size)?
Send Stop contion Send Dummy write
"S1=0xDO0;" "S0 x00;"
Transaction complete
"buffer.rxpend = 0;"
Reset State machine A A
"state = 0;"
Y
i ‘Cum
. . 2 .
Figure 8. Software Flow Diagram of 1°C routines (cont)
Jul-98 Mitsubishi Electronics 5 APN7515N0498A

M37515: Interfacing with EEPROM using 12C M37515

5.0 LISTING FOR M37515 IIC FIRMWARE

................. LISTING FOR M37515.C

/1 MB7515 Denp Board - M tsubishi Electronics Anerica
/1 Board Designed by Mark Goul d

/'l Firmvare Programed by Howard Chan

/1 Version 0.1 3/12/98

/'l Version 0.5 3/ 13/ 98
/'l Version 0.9 3/ 14/ 98
/1l Version 1.0 3/ 24/ 98

I e e

/1 Mni App Note: The follow ng code is designed for the M37515 board.

/1 The sanmple firmmvare consists of the following files:

/1 m37515. h - Declaration of SFR registers.

11 m37515.c - Main Source code. Also sanple of Milti EEprom page wite and

/1 read.

/1 iic.h - header file to include to use |1 C & EEprom function

/1 iic.c - IICroutines for Master Read, Wite, & Ack Polling.

11 func.h - header file to include to use AD-functions and timer init.
/1

/1 The code below, sinply intializes the MCU, the Tiner (AD-sanpling) and the |1 C system
/1l Then a loop is used to wite a block of nore than 8 words to the function

/1 WiteEEprom whi ch can handl e a maxi mum of 8 bytes at a tine (linmtation of EEprom
/1 refer to Mcrochip 24C01B Serial EEprom Data Sheet.) Then the Target buffer

/Il is cleared of old data. The Seek function is called to nove the EEprom

/] address pointer to the first byte to be read. Were ReadEEpromis used to

/!l Read the consecutive bl ock(Read have no limtation). Finally the main()

/1l waits forever, as a timer 1 interrupt occurs to sanple the 10-bit AD data.

/1

/1 NOTE: The while | oop (EX. while(SeekEEprom(0x20));) is used, because the EEprom
/1 functions return a '1 if the IICis busy with a current read or wite. Thus

/1 it waits till it can performthe transacti on before continuing.

/1

#pragma | anguage=ext ended

#i nclude "iic.h"
#i ncl ude "func. h"

I Gobals---------cmmiii
const char data[] = {'0','1,'2 ,'3 ,'4 ,'5 ,'6,'7 ,'8,'9 'A,'B,'C,' D, E};

char RXbuffer[sizeof(data)]; // This buffer will acconmi date the data above

R Main function -----------------
voi d main(void) {
char i; /1 just a tenp storage variable
char size;
Meuinit(); /1 Initialize MCU registers & ports
Tinerinit(); /1 Intialize timerl for AD-sanpling
I1Cinit(); /1 Initialize I1C and timer2 (11Q
for(i =0; i < sizeof(data); i += 8)
if(i < sizeof(data) - 8) /1 1f nore than 8 bytes then
size = 8; /1 Wite 8 bytes at a tine
el se Il else
size = sizeof(data) - i; 11 Wite renmnining bytes

whil e(WiteEEprom &ata[i],0x20 + i,size)); // wite data to EEprom

}
for(i = 0; i < sizeof(data); i++) /1 Cear RXbuffer
Rxpbuffer[i] = O;

whi | e(SeekEEpr om(0x20)) ; /1 Move EEprom address pointer to 1st byte to read
whi | e(ReadEEpr om(RXbuf f er, si zeof (data))); // Read EEprom data
while(l); /Il Wit here

}

----------------- LISTING FOR IIC.H

#ifndef I1C

Jul-98 Mitsubishi Electronics 6 APN7515N0498A

M37515: Interfacing with EEPROM using 12C M37515

#define I1C O

/1 Function Declarations for EEprom

char WiteEEpron(void *dsptr, unsigned char address, unsigned char size);
char SeekEEpron{unsi gned char address);

char ReadEEprom(void *dsptr, unsigned char size);

void Delay(int time);

/1 Function Declarations for IIC

void I1Cnit(void);

char Masterl|C(void *dsptr, char slvaddr, char datasize, char RW;
interrupt [OxFO - OxDC] void SMBus_intr(void);

interrupt [OxE8 - OxDC] void tiner2_intr(void);

#endi f

................. LISTING FOR IIC.C

/1 M37515 Denp Board - M tsubishi Electronics Arerica

/'l Firmwvare Programed by Howard Chan

/1 Version 0.1 3/12/98

/1 Version 0.5 3/13/98

/1 Version 0.9 3/ 14/ 98

/1 Version 1.0 3/ 24/ 98

I e e

/1 Mni App Note: The followi ng routines are used for interfacing with

/1 the MB7515 11 C hardware. The nain engine is in the Masterl|C() function
/1 and the SMBus_intr() function. The others are just application functions for
/1 EEprom NOTE: Sl ave node hasn't been inplenented yet.

/1

/1

#i ncl ude "nB7515. h"
#i ncl ude <intr740. h>

ff--ae-- Definitions-------------
#define WRITE O /Il Wite
#define READ 1 /'l Read
#define NULL O /1 Null
#define 11 C_TI ME 0x01 /1 11Cpolling time = f(Xin)
[f---e--- Buf fer dobal-----------
struct {
char *rxptr; /1 Rx Data pointer NOTE: shoul d have seperate pointers
char *txptr; /1 Tx Data pointer to prevent accidental overwite.
char index; /1 index of data
char size; /1 size of data
char address; /1 Slave Address
char node: 1; // "1 - tx node, '0" - rx node
char txpend: 1; /1l Are nore TX transactions pendi ng?
char rxpend: 1; /1 Are nore RX transactions pendi ng?
} buffer; /1 11C bufferbuffer;
char testb5; /1 Debug Only
struct {

char cl knode;
} 1l Cparaneters;

[]-eeeeee- I1C Functions-----------
/1 FUNC: void IlGCinit(void)
/]l DESC:. Initialize 11 C systemto single master bus.
void I1Cnit(void) {
di sable_interrupt();

T2 = | I C_TI Mg / Set I1C Time
T2REQ = O; /1l Reset Timer 2 Interrupt Request
T2EN = 0; /! Disable Tiner 2 Interrupt (Called when Polling required)
S2 = 0xCs; // 11000101b - Set C ock npde & NACK return node
LT
Il ||| +++++- 100 @ Standard C ock Mode
I +------- FAST: 0 - Standard C ock Mde
I |+ - ACK bit: 1 - ACK non-return node
I ACK: 1 - No ACK cl ock sent
S1 = 0x10; /1 00010000b - Hold Scl to high
fE 1T

Jul-98 Mitsubishi Electronics 7 APN7515N0498A

M37515: Interfacing with EEPROM using 12C M37515
/1 | | ++++-- Don't Care
11 | +------ PINN 1 - Cr IRQfor next INT
/1 R BB: 0 - Send Stop Condition
I/ e TRX: 0 - Recieve Mde
R MST: O - Slave Mode (Don't generate start or stop)
S1D = 0x50; /1 01010000b - Disabl e communications and set ports
1l [IT1T1
/1 ||| +++- Bit counter - Don't Use
/1 [|+----- ESO: O - Disable SO IIC
/1 | +------ ALS: 1 - Free form (EEprom
Il +o------ SAD: 0 - 7-bit address
/1 o - TSEL: 1 - P24 & P25
N O TISS: 0 - CMOS input
/1 1CON & | REQ Setting
11 CREQ = 0; /1 Cear interrupt request
Il CEN = 1; /1 '"1'- Enable, '0' Disable IIC interrupt
enabl e_interrupt();
}
/1 FUNC:. void Delay(int tine)
/] DESC. Add del ay
/1 tinme: Lenth of delay: (Actual tinme hasn't been cal cul ated.
void Delay(int time) {
int i;
for(i =0; i<time; i++);
}
/1 FUNC:. char Masterl|C(void *dsptr, char slvaddr, char datasize, char RW
/1 DESC. Access |IC bus as Master transaction
/1l return: "0" - successful transaction, "1" - Read or Wite Pending, Transaction denied
/1 dsptr: pointer to a data structure to wite to IIC.
/1 slvaddr: slave address of device on bus.
/] size: total size of data transcation
/I RwW "O" Wite node, "1" - Read node;
char Masterl|C(void *dsptr, char slvaddr, char datasize, char RW {
if (buffer.rxpend || buffer.txpend)
return 1; /1l "1 - Read or Wite is still pending
ESO = 0; /Il Disable IIC
ACKbit = I RW /1 *1" = ACK non-return node, '0'" = ACK return node
S1 = 0x10; /1 00010000b - Hold Scl to high
LE T
Il |||]|++++- Don't Care
I +------ PIN 1 - Cr IRQfor next INT
I || +------- BB: 0 - Send Stop Condition
I TRX: 0 - Recieve Mde
N MST: O - Slave Mode (Don't generate start or stop)
ESO = 1; // ESO: 1 - Enable IIC
SO = (slvaddr << 1) | (RW& 0x01); /1 Set Slave address and transfer direction
/] SSSSSSSR
LE T _
I |1l +- RWM: 0 - Wite node, '1'" - Read node
/] +++++++--- Sl ave Address
S1 = 0xFO; // 11110000b - Send Start Condition
LT
Il |||]|++++- Don't Care
I +----- PIN 1 - Cr IRQfor next INT
I || +------- BB: 1 - Send Start Condition
I TRX: 1 - Transmit Mode
R MST: 1 - Master Mode (generate start or stop)
buffer.address = (slvaddr << 1) | (RW& 0x01); // Set Slave address and direction
buffer.size = datasize; /1 Set total size of ds
buf fer.index = 0x00; /1 Set index to point to first data
if(RW { /1 if RW="1" then read
buffer. node = 1; /1 "1 Read node
buffer.rxpend = 1; /1 "1 Read pending
buffer.rxptr = (char *)dsptr; /1 Set Rx pointer to dsptr
} else {
buf fer. node = 0; /1 '0" Wite node
buffer.txpend = 1; /1 "1 Wite pending
buffer.txptr = (char *)dsptr; /1 Set Tx pointer to dsptr
}
return 0; /1 '"0'" - Transaction conplete
}
Jul-98 Mitsubishi Electronics 8 APN7515N0498A

M37515: Interfacing with EEPROM using 12C M37515

/1 FUNC:. char WiteEEprom(void *dsptr, unsigned char address, unsigned char size)
/1 DESC. Wite data to |1 C bus via Buffer.
/1 NOTE: The M crochi p 24C01B Serial EEprom has only a 8-byte wite page.

/1 So the maximumwite size per block is 8. For data that is larger than
11 8 bytes, Mke subsequent calls to this function with the address increnented.
/1 return: "0" - successful transaction, "1" - Read or Wite Pending, Transaction denied

/1 dsptr: pointer to a data structure to wite to IIC.

/1 address: address of device or menory to wite.

/1l size: total size of data. (Size limt to 8-bytes at a tine)

char WiteEEpron(void *dsptr, unsigned char address, unsigned char size) {
static char EEbuf[9]; /] 8 data bytes + 1 EEprom address byte
char i;

if (buffer.rxpend || buffer.txpend)
return 1; /1l "1 - Read or Wite is still pending
EEbuf [0] = address; /1 Set EEprom address

for(i =0; (i <size) & (i < 8); i++) [/ Copy data to wite buffer
EEbuf[i + 1] = ((char *)dsptr)[i];

return Masterl| C(EEbuf, (OxAO >> 1), size + 1, WRITE);
}

/1 FUNC: char SeekEEprom(unsi gned char address)
/1 DESC. Move EEprom pointer to correct address
/1l return: "0" - successful transaction, "1" - Read or Wite Pending, Transaction denied
/] address: address of device or nenory to read.
char SeekEEpron{unsi gned char address) {
static unsigned char data;
data = address; /1 Ensure that data has an address during interrupts
return Masterl| C(&data, (OxA0 >> 1),1, WRI TE);
}

/1 FUNC:. char ReadEEprom(void *dsptr, unsigned char size)
/1 DESC. Read data to IIC bus via Buffer
/1 return: "0" - successful transaction, "1" - Read or Wite Pending, Transaction denied
/1 dsptr: pointer to a data structure to read to |IIC.
/1 address: address of device or nenory to read.
/1 size: total size of data. (No size linit)
char ReadEEprom(void *dsptr, unsigned char size) {
return Masterl | C(dsptr, (OxAO >> 1), size, READ);
}

/1 FUNC:. interrupt [OXE8 - 0xDC] void tiner2_intr(void)
/1 DESC:. This interrupt is used for ACK polling.
interrupt [OXE8 - OxDC] void tiner2_intr(void)

di sable_interrupt(); /1 Initiate Acknow edge Polling
ESO = 0; /] ESO: 0 - Enable IIC
S1 = 0x10; // 00010000b - Hold Scl to high
LT
Il |||]|++++- Don't Care
I +----- PIN 1 - Cr IRQfor next INT
I || +------- BB: 0 - Send Stop Condition
I TRX: 0 - Recieve Mde
R e MST: O - Slave Mode (Don't generate start or stop)
/1 Delay(1l);
ESO = 1; // ESO: 1 - Enable IIC

SO = buffer.address;// Set Slave address and transfer direction
/1 SSSSSSSR

L0
I 11111 +- RWM: 0 - Wite node, '1'" - Read npde
/] +++++++--- Sl ave Address
S1 = OxFO; // 11110000b - Send Start Condition

LT

Il |||]|++++- Don't Care

I +----- PIN. 1 - dr IRQ for next INT

I +------ BB: 1 - Send Start Condition

L S TRX: 1 - Transnit Mode

N MST: 1 - Master Mode (generate start or stop)

T2EN = 0; /1 Disable Tiner 2 Interrupt
enabl e_interrupt();

}

/1 FUNC:. interrupt [OxFO - 0xDC] void SMBus_intr(void)
/1 DESC. Interrupt call services the IIC bus as a Master.
interrupt [OxFO - OxDC] void SMBus_intr(void) {

static char state; // Internal State counter

Jul-98 Mitsubishi Electronics 9 APN7515N0498A

M37515: Interfacing with EEPROM using 12C M37515

di sable_interrupt();
if(AL ==1) { // If bus arbitration is |ost
S2 = 0xC5; // 11000101b - return NACK return npde

LT
Il ||| +++++- 100 @ Standard C ock Mode
I || +------- FAST: 0 - Standard C ock Mde
I |+ - ACK bit: 1 - ACK non-return npde
I ACK: 1 - ACK cl ock sent
SO = 0x00; // Flush buffer with dummy data(like a read)
}
if(LRB) { /1 If no ACK then Poll again.

t est 5++; /1 No Ack flag
T2REQ = 0; // Reset Timer 2 Interrupt Request
T2EN = 1; /1 Enable Ack Polling (Tiner 2)
S1 = 0xDO; // 11010000b - Send Stop condition
} else
i f(buffer.node) {
switch(state) {
case 0:
TRX = 0; /1 Set direction to Rx
SO = 0x00; // Dummy wite to start next read
state = 1; // nove to next state
br eak;
case 1:
TRX = 0; I/l Set direction to Rx
buffer.rxptr[buffer.index++] = SO; // Read II1C shift reg.
if (buffer.index < buffer.size) { // |If nore data then
SO = 0x00; // Dummy wite to start next read
state = 1; // Move to next state

} else {

S1 = 0xDO; // 11010000b - Send Stop condition
LT
Il |||]|++++- Don't Care
I +----- PINN. 1 - dr IRQ for next INT
I +------- BB: 0 - Send Stop Condition
L TRX: 1 - Transnmit Mode
N MST: 1 - Master Mode

buffer.rxpend = 0; // Transaction conplete
state = 0; // Reset State Machine

br eak;
defaul t:
state = 0; /'l Reset State Machine
S1 = 0xDO; /1 Send Stop condition
buffer.rxpend = 0; // RX transaction is conplete
}
} else {
R Wite Mde---------------
if(buffer.index < buffer.size) { /1 1f no nore data to flush
SO = buffer.txptr[buffer.index++]; // Wite data to IIC shift reg.
} else {
S1 = 0xDO; // 11010000b - Send Stop condition
L0
Il |||]|++++- Don't Care
I +----- PIN 1 - Cr IRQfor next INT
I || +------- BB: 0 - Send Stop Condition
I TRX: 1 - Transmit Mode
I MST: 1 - Master Mode

buffer.txpend = 0; // Transcation conplete
state = 0; // Reset State Machine

enabl e_interrupt();

----------------- LISTING FOR FUNC.H

#i f ndef FUNC
#define FUNC O

/1l Function Declarations
void Muinit(void);
void Tinerinit(void);

voi d ShowLED(unsi gned int val ue);
unsi gned i nt Anal og(unsi gned char channel);

Jul-98 Mitsubishi Electronics 10 APN7515N0498A

M37515: Interfacing with EEPROM using 12C M37515

/1 Interrupts
interrupt [OXEA - OxDC] void tinerl_intr(void);

#endi f

................. LISTING FOR FUNC.C

/1 M37515 Denp Board - M tsubishi Electronics Arerica

/'l Firmwvare Programed by Howard Chan

/1 Version 0.1 3/12/ 98

/1 Version 0.5 3/13/98

/1 Version 0.9 3/14/98

/1 Version 1.0 3/ 24/ 98
e T

/1 Mni App Note: The followi ng routines are used for interfacing with

/1 the M37515 10-bit A-D, tiners, and LEDs.

/1

/1 The 10-bit A-Droutine is very sinple. It sinply sets the channel bits
/1l to read and clears the start conversion bit. Then the bit is polled for
/1l A-D conplete status. Then the AD-H nust be read first for an 10-bit

/1 conversion, else read the AD-lo first and discard the AD-H for an 8-bit read
/1

/1 For timers, just set the timerl registers for the value to be |oaded after
/1 every underflow, and set the interrupt vector for the appropriate ISR
/'l Belowis the fornula used to calculate the tine.

/1 f(Xin)/16 * (TIME) = PRE12 * <T1 or T2>;

/1

/'l where f(Xin) = Input Xtal Frequency (Hz)

/1 TIME = Time of overflow in (secs)

/'l PRE12 = Prescaler value to load that will affect tiner T1 and T2

/1 Tl or T2 = Timer value to be |oaded on tiner underflow.

/1

/1 The LED ports (pins P13-P17) can sink up to 15 mA, so an external driver
/'l is not necessary. Just tie the LED to the port, and wite a '0" to the
/1 P1 register to light the LED.

#i ncl ude "nB7515. h"
#i ncl ude <intr740. h>

[]-eemmeeo - Definitions ----------------
#define ADIOBIT 1 // 1: 10-bit A-D, 0: 8-bit A-D
#defi ne ADSEL_MSK 0x07 /1 Mask for Anal og inputs XXxxxAAA
#defi ne ADCNV_MSK 0x10 /1 Mask for AD conversion XXXAXXXX
#defi ne SAMPLE_TI ME 0x08 /] Sample time for AD input - about 8 ns.
#defi ne LEDRANGE 0x03ff /1 Full scal e range of LED out put
/1

#def i ne RANGE8O 0x333 0.8 * LEDRANGE

#def i ne RANGE6O 0x266 /1 0.6 * LEDRANGE

#def i ne RANGE40 0x199 /1 0.4 * LEDRANGE

#def i ne RANGE20 0xCC /1 0.2 * LEDRANGE

#def i ne RANGEOO 0x10 /1 0.01 * LEDRANGE

unsi gned int test; /1l dobal test variables

int anal ogl, anal 0og2; /1 Watch Variables, for Analog 1 & 2

/1 FUNC: void ShowLED(unsigned int val ue)
/1 DESC. Qutput values to LEDs as a percentage 20, 40, 60, 80, 100
/1 value: value to output to LEDs
voi d ShowLED(unsi gned int value) {
/] Qutput LEDs via trickle nethod
// '0" - on, '"1'" - off

LED100 = (val ue >= RANGE8O) ? 0 : 1; /1 80 - 100 percent
LED8O = (value >= RANGE6O) ? 0 : 1; /1 60 - 79 percent

LED60 = (value >= RANGE40) ? 0 : 1; /1 40 - 59 percent
LED40 = (value >= RANGE20) ? 0 : 1; /1 20 - 39 percent
LED20 = (value > RANGEOO) ? 0 : 1; /1 00 - 19 percent

}

/1 FUNC: unsigned int Anal og(unsigned char channel)
/1 DESC. Read Channel of A/D port NOTE: Possible bit manipulation due to high bits.
/1 return: Results of 10-bit A-D conversion
/1 channel: select AD channel to read fromoO - 7
unsi gned i nt Anal og(unsi gned char channel) {
uni on {

Jul-98 Mitsubishi Electronics 11 APN7515N0498A

M37515: Interfacing with EEPROM using 12C

M37515

unsi gned int word;

unsi gned char byte[2];
} adword;
ADCON = ADSEL_MsK & channel ; /1 Mask correct channel and start conversion
/1 ADCON &= OxEF; Start Conversion (zero bit 4)
whi | e(! (ADCON & ADCNV_MBK)) ; /1 wait till conversion conplete (bit 4)
#if ADLOBI T
adwor d. byte[1] = ADH; /1 convert ADH & ADL to an integer (10-bit)
#endi f
adwor d. byte[0] = ADL; /1 NOTE: ADL
return adword. word; /1 Return 10-bit A/ D val ue
}
/1 FUNC: void battery(void)
/1 DESC: A function that sinply sanples AD channel 0 & 1 and out puts
I the first 8-bit to PO and last 2-bits + channel to P1;
char port;
voi d battery(void) {
/1 char port;
char tenpO,tenpl;
uni on {
unsi gned int word;
unsi gned char byte[2];
}oad[2];
ad[0] .word = Anal og(0); /] Eval uate AD #0
ad[1] .word = Anal og(1); /] Eval uate AD #1
/| DEBUG VARI ABLES
anal ogl = ad[O0].word;
anal og2 = ad[1].word;
port = (ad[1].word >= ad[0].word) ? 1:0;
tenmp0 = ad[port].byte[O]; /1 Set |ow byte
tenpl = (Oxf8 & P1) | (0x03 & ad[port].byte[1]); /1 Set high byte last 2 bits.
templ |= (port) ? 0x04: O; /1 Set bit for port. 1 - port 1, 0 - port O
PO = tenpO; /1 Place data on the bus (Il ow)
P1 = tenpil; /1 (hi gh)
}
/1 FUNC: interrupt [OXEA - OxDC] void timerl_intr(void)
/1 DESC. Interrupt call sanples AD port #0 and displays data to LED

interrupt [OXEA - OxDC] void tinerl_intr(void) {

static char sanp[2];
static char i;

char button;

di sable_interrupt();

/1 Debounce routine

sanp[i ~=0x01] = P4.1;

i f (sanp[0] ==sanp[1])
button = sanp[0];

/] Battery interrupt
if(button == 0)
battery();

/1 Sampl e Pot

test = Anal 0og(2);
ShowLED(t est) ;
enabl e_interrupt();

Initialization functions

/] Static variable assignnents.

/] store sanple & index to next sanple.

/1 Update button status if same.

/'l For Debug Use
/1 Display Analog results to LED

}

R

/1 FUNC:. void Tinmerinit(void)
/1 DESC:. Initialize Tinmner

void Tinerinit(void) {
di sable_interrupt();

1 interrupt for A-D use.

PRE12 = Oxff; /] SET Pre-scaler for tiner 1 & 2
Tl = SAMPLE TIME; // Set AD sanple Tine
T1REQ = O; /!l Reset Timer 1 Interrupt Request
T1EN = 1; /1 Enable Timer 1 Interrupt
enabl e_interrupt();
}
Jul-98 Mitsubishi Electronics 12 APN7515N0498A

M37515: Interfacing with EEPROM using 12C M37515
/1 FUNC: void Muinit(void)
/1l DESC. Initialize Mu ports, cpu node and AD node
void Muinit(void) {
di sable_interrupt();
CPUM = 0x04;
/* Set CPU node register */
/* 00000100B */
I LTI *!
/* [L]+ - - PROCESSOR MODE BI T */
/* [1111] 00 : SINGLE CH P MODE */
/* [+ - - STACK PAGE I N PAGE 1 */
/* []+ - - PORT Xc : 1/0 PORT FUNC. */
/* [| +-----mmm i - MAI N CLOCK Xi n-Xout : EXECTE */
/* R L COUNTER SOURCE : F(Xin)/2 */
POD = OxFF; /* 11111111B (1: OUTPUT, 0:1 NPUT) */
I LTI !
/* [T+ - - DATAO */
/* [P+ - - DATAL */
/* [I+ - - DATA2 */
/* []+ - - DATA3 */
/* [||+ - - DATA4 */
/* [| +-----mmmm e - DATA5 */
/* R DATA6 */
/* L R DATA7 */
PO = 0x00;
P1D = OxFF; /* 11111111B (1: QUTPUT, 0: 1 NPUT) */
I LTI !
/* R RS S R No Use */
/* []+ - - LEDO */
/* []|+ e - - LED1L */
/* [| #---mmmm i - LED2 */
/* R LED3 */
/* e LED4 */
P1.0 = 0x00;
P2D = OxFF; /* 11111111B (1: QUTPUT, 0: 1 NPUT) */
I [ITTTT] !
/* [] ++---mmmm - - - No Use */
/* []]]+------mmmmma - - SMBus Cl ock */
/* [+-mmmmm e - SMBus Dat a */
/* RS EEprom | |1 C Data */
/* R EEprom 11 C O k */
/* L L No Use */
/* e No Use */
P3D = 0x00; /* 00000000B (1: QUTPUT, 0: | NPUT) */
I [ITTTL !
/* [+ - - ANO(Vol t age +) */
/* R SRR AN1(Vol t age -) */
/* [] 4= - AN2(PQT) */
| * R o R No Use x|
ADCON = 0x00;
/* Set A-D ctrl reg. */
/* 00000000B, ADCON */
I LTI *
/* [J]]]+++--mmmmmmaaa--- ANALOG | NPUT PIN SELECT */
I L1111 !
I L1111 !
/* []+ - - NO USE */
/* []|+ - - A/ D CONVERSI ON COWPLETION BI T
/* R NO USE */
enabl e_interrupt();
Jul-98 Mitsubishi Electronics 13 APN7515N0498A

