
M37515

Jul-98 Mitsubishi Electronics 1 APN7515N0498A

M37515: INTERFACING WITH EEPROM USING I2C

Abstract
The following article will briefly discuss the synchronous serial I2C
protocol and the M37515 I2C/SMBus hardware implementation. A
discussion on the firmware structure and implementation on the
I2C interface to the serial EEprom and M37515 MCU.

Author: Howard Chan

1.0 Introduction
I2C is a simple serial bus for communication among
multiple hardware peripherals and devices in an
embedded system. The Mitsubishi M37515 is a 8-bit
MCU with an I2C/SMBus (System Management Bus)
interface. The M37515 is a popular device used in
keyboard controller and Smart battery applications. The
SMBus uses a subset of the I2C protocol which is
normally applied to power management applications like
Smart Battery. The SMBus protocol will not be
discussed in this article.

1.1 I2C: Description
I2C is a synchronous serial bus developed by Philips to
simplify embedded device communication design
between different peripherals. Many devices like
EEproms, ADCs, LCD drivers, FPGAs, etc support the
I2C bus protocol. These devices can communicate
through a 2-wire bus, with data transfer rates of
100Kbits/s to 400Kbits/s. The number of devices on the
bus is limited by the maximum bus capacitance of
400pF.

Most devices are used as slave devices while MCUs are
typically master devices. I2C supports multi-mastering,
which means more than one device is allowed to control
the bus. I2C has collision detection and arbitration to
maintain data integrity. I2C uses two lines, Serial Data
Address Line (SDA) and Serial Clock Line (SCL) .
These lines are bi-directional and are pulled-up high.

1.2 I2C: Protocol
I2C is a multi-master/slave protocol. All devices
connected on the bus must have an open-collector or
open-drain output. A transaction begins when the bus is
free (i.e. both SCL and SDA is high), a master may
initiate a transfer by generating a START condition.
Then the master sends an address byte that contains
the slave address and transfer direction. The addressed
slave device must then acknowledge the master. If the
transfer direction is from master to slave, the master
would becomes the transmitter and writes to the bus.
While the slave becomes the receiver and reads the
data and acknowledges the transmitter, and vice versa.
When the transfer is complete, the master sends a stop

condition and the bus becomes free. In both transfer
directions, the master generates the clock SCL and the
START/STOP conditions.

Setup
Time

Setup
Time

Hold
Time

Hold
Time

SCL

SCL

SDA
(start condtion)

SDA
(stop condition)

Figure 1. Start/Stop conditions

The start condition is generated by a High to Low
transition in the SDA line during the High period of the
SCL line as shown in figure 1. A stop condition is
generated by a Low to High transition in the SDA during
the High period of the SCL line also shown in figure 1.

The number of bytes transferred per START/STOP
frame is unrestricted. Data bytes must be 8-bits long
with the most significant bit (MSB) first. Each valid data
bit sent to the SDA line must remain high for ‘1’ or low
for ‘0’ during the high period of the SCL, otherwise any
transition in the SDA line while SCL is high will be read
as a START/STOP condition as shown in figure 2.
Thus, transitions can only be made during the low period
of SCL.

An acknowledge bit must follow each byte. After the last
bit of the byte is sent, an ACK clock (acknowledgement
clock) is generated by the master (9th clock). An ACK
(acknowledge bit, low) must be sent by the receiver and
remain a stable low during the high period of the ACK
clock as shown in figure 2.

1 2

1 2

8 9

8 ACK/
NACK

SCL from Master

SDA

ACK
Clock

From Transmitter From
Receiver

Must remain stable
during SCL High

(MSB)

Start
condition

Stop
condition

Figure 2. Data format

If the slave-receiver doesn’t return an ACK (e.g. an error,
or is unable to receive the data), then the slave-receiver
device must leave the SDA line high (NACK). The
master will abort the transfer by generating a stop
condition. If the slave-receiver does return an ACK, but
sometime later it is unable to receive any more data.
Then the slave must generate a NACK (not
acknowledge, high) on the first byte to follow (see figure

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 2 APN7515N0498A

2). The slave will then need to keep the SDA line high
for the master to generate a stop condition.

If the receiver is the master and transfer is coming to an
end. Then the master needs to send a NACK after the
last byte is sent. The slave-transmitter must release the
SDA line to high to allow the master to generate a
START/STOP condition.

At the beginning of each transfer, the master generates
the start condition and then it sends a slave address.
The standard slave address is 7-bits followed by a
direction bit (8th bit, (R/#W)) as shown in figure 3. When
the direction bit is a WRITE (low or zero), the addressed
slave device becomes the receiver and the master
becomes the transmitter. When the direction bit is a
READ (high or one), the addressed slave device
becomes the transmitter and the master becomes the
receiver.

S: START condition P: STOP condtion
W: Write bit (Low) R: Read bit (High)
A: ACK bit N: NACK bit

S Slave Address (7-bits) W A DATA (8-bits) A DATA (8-bits) A/N P

S Slave Address (7-bits) R A DATA (8-bits) A DATA (8-bits) N P

A master-transmitter transmit data to a slave-receiver

A master-receiver receives data from a slave-transmitter

From Master to Slave

From Slave to Master

Figure 3. I2C Address/data communication format (SDA)

2.0 Serial EEPROM Interface
The Serial EEPROM that will be used in this discussion
is the Microchip 24C01B. The EEPROM is an 8-pin
device that uses the I2C serial interface. The slave
address assigned to this device by the manufacturer is
1010XXX, where X = Don’t Care. The serial EEPROM
supports several transfer modes such as: Byte Write,
Page Write, Current Address Read, Random Read, and
Sequential Read.

To perform a Byte Write, the master will generate a
start condition and send the slave address with the
direction bit set to HIGH as in Figure 4. When the slave

device matches the address, it will send an ACK to the
master during the 9th clock cycle. The next byte sent to
the EEPROM will be the word address that moves the
EEPROM’s internal address pointer. Then the data sent
by the master will be written to the memory location
pointed by the EEPROM’s address pointer. Finally the
master will generate a stop condition which will signal
the EEPROM to initiate the internal write cycle. At this
time the EEPROM will not generate any acknowledge
signals till the transaction is complete.

A Page Write is similar to a Byte Write, except the
master can transmit up to eight bytes before generating
a stop condition. Each byte sent to the device will
increment the address pointer for the next byte
transaction. The EEPROM stores the data to a eight byte
buffer, which is then written to memory after the device
has received a stop condtion from the Master (see figure
4).

Read operations are initiated the same way as a write
operation except the direction bit is set to READ. The
EEPROM maintains the address pointer from the last
byte accessed incremented by one. In a Current
Address Read transaction, the EEPROM acknowledges
the master after receiving the slave address and
transmits the data byte pointed by it’s internal address
pointer (figure 5). The pointer is incremented by one for
the next transaction. Sequential Read behave the same
way as a Current Address Read transaction except data
is continually transmitted by the slave device till the
master generates a stop condition (figure 5). For
Random Read, the master generates the start condition
and sends the slave address with the direction bit set to
WRITE (figure 5). Then the next byte sent is the word
address to be accessed. This operations will change the
EEPROM internal address pointer. Then without
generating a stop condition, a Current Address Read or
Sequential Read transaction will follow. Notice that the
Current Address Read and Sequential Read transaction
will regenerate another Start condition as shown in figure
5.

AS A Word Address DATA A PX X X

S: START condition P: STOP condtion
W: Write bit (Low) R: Read bit (High)
A: ACK bit N: NACK bit

From Master to Slave

From Slave to Master

1 0 1 0 W

S A Word Address[n] A DATA [n] A PX X X1 0 1 0 W DATA [n + 1] A DATA [n + 7] A

Control Byte

Control Byte

Byte Write

Page Write

Figure 4. Write transfer mode

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 3 APN7515N0498A

3.1 Implementation: Hardware
The M37515 has a built-in multi-master I2C/SMBus
peripheral. This interface conforms to the Philips I2C-
BUS data transfer format and SMBus compliant. This
multi-master I2C interface consists of the address
register, the data shift register, status register and other
control circuits. The interface supports 10-bit and 7-bit
addressing format, High-speed (400KHz) and Standard
(100KHz) clock mode, Master transmission and
reception, and Slave Transmission and reception.

To interface the M37515 to the 24C01B serial EEPROM
simply requires connecting the SDA & SCL lines
together. The rest is done in firmware (see section 3.2).
Note that the transfer rate has been set as 100KHz, so a
10K pull-up is connected to the SDA line Additional
peripherals can be connected to the I2C bus, as long as
the total capacitance doesn’t exceed 400pF.

3.2 Implementation: Firmware
The firmware takes advantage of the M37515 I2C/SMBus
interface. The sample firmware will exercise the I2C
interface by interfacing with an external serial EEPROM.
The firmware will write a variable size block of data from
ROM to external EEPROM, then read the EEPROM to
ram. The main routine calls the routines WriteEEprom,
SeekEEprom and ReadEEprom. The routines format
the data that will be sent the EEPROM and then calls the
function MasterIIC which sets up the I2C hardware and
starts the I2C peripheral. An interrupt service routine
handles the transmit complete/received data interrupt.

The main routine initializes the MCU, Timers, and the I2C
peripherals. Then it breaks the data to be written to the
EEPROM in 8 byte blocks, due to the limitations of the
EEPROM. Then it calls WriteEEprom and waits for the

function to complete. Then SeekEEprom is called to
move the EEPROM word address pointer to the address
to be read to ram. ReadEEprom is called to read the
EEPROM to memory.

S A DATA N PX X X

S: START condition P: STOP condtion
W: Write bit (Low) R: Read bit (High)
A: ACK bit N: NACK bit

From Master to Slave

From Slave to Master

1 0 1 0 R

S A Word Address[n] A PX X X1 0 1 0 W DATA [n] N

Control Byte

Control Byte

Current Address Read

Random Read

S X X X1 0 1 0 R

Control Byte

A

Control
Byte

PDATA [n + x] NDATA [n] A DATA [n + 1] A DATA [n + 2] A

Sequential Read

Figure 5. Read Transfer Mode

Write to EEprom, with no more
than 8 bytes at a time:

WriteEEprom(data,addr,size);
Incement addr by size;

Initialize MCU, Timers & I2C
function:

Mcuinit();
Timerinit();

IICinit();

main()

i < sizeof(data)?

T

i = i + 8;
if more than 8 bytes

then size = 8;
else

size = remaining;

F

Clear RXbuffer[];

Move EEprom address pointer
to first to read.

SeekEEprom(addr);

Is Last Transaction
finished?

F

Read EEprom at current
address pointer.

ReadEEprom(RXbuffer,size);

T

Is Last Transaction
Finshed?

F

Wait
Forever

T

Figure 6. Software Flow Diagram of Main()

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 4 APN7515N0498A

The details of the firmware is outlined in the Software
Flow Diagrams shown on Figures 6, 7, & 8 and
commented on the source code listing on section 5.0.

IICinit()

disable interrupt;

Set ACK timeout (timer 2)
"T2 = IIC_Time" // 1 ms

Enable timer 2 interrupts
"T2REQ = 0;"
"T2EN = 0;"

Set Clk mode to 100 kHz &
Nack return mode

"S2 = 0xC5;"

Hold Scl to high
"S1 = 0x10;"

Disable I2C & set ports
"S1D = 0x50;"

Enable IIC interrupt
"IICREQ = 0;"
"IICEN = 1;"

Enable Interrupt;

Return

MasterIIC

transaction
pending?

Disable I2C
"ES0 = 0;"

F

Hold Scl to High
"S1 = 0x10;"

Reenable I 2C
"ES0 = 1;"

Set slave address & direction
"S0 = (slvaddr << 1) | (RW & 1);"

Send Start condition
"S1 = 0xF0;"

Set buffer info.
"buffer.address = (slvaddr <<

1) | (RW & 0x01);"
"buffer.size = datasize;"

"buffer.index = 0;"

RW == 1 ?

Set to read mode
"buffer.mode = 1;"
"buffer.rxpend = 1;"

"buffer.rxptr =(char *)dsptr;"

Set to write mode
"buffer.mode = 0;"
"buffer.txpend = 1;"

"buffer.txptr = (char *)dsptr;"

FT

Return "0"

Return "1"

T

WriteEEpr
om

transaction
pending?

Build EEprom static buffer.

Set EEprom address to first
data byte

"EEbuf[0] = address;"

Copy the data after 1st byte
"for(i=0; i<size && i <8; i++)

 EEbuf[i+1] = (char *)dstpr[i];"

Send EEbuf to MasterIIC in
write mode

"MasterIIC(EEbuf, (0xA0 >>
1), size + 1, 0);"

Return
MasterIIC

Return "1"

Figure 7. Software Flow Diagram of I2C Functions

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 5 APN7515N0498A

SeekEEpr
om

Save address into static
variable

"data = address;"

Send address data to
MasterIIC in write mode

"MasterIIC(&data, (0xA0>>1),
1,0);"

Return
MasterIIC

ReadEEpr
om

Pass dsptr to read to
MasterIIC in read mode

"MasterIIC(&data, (0xA0 >>
1),1,0);"

Return
MasterIIC

timer2_int
r

disable interrupt

Disable I 2C
"ES0 = 0;

Hold Scl to high
"S1 = 0x10;"

Enable I 2C
"ES0 = 1;"

Set Slave address and
direciton

"S0 = buffer.address;"

Send Start condition
"S1 = 0xF0;"

Disable Timer2 interrupt
"T2EN = 0;"

renable interrupt

return

SMBus_in
tr

Set to Nack Return Mode
"S2 = 0xC5;"

Flush buffer with dummy write
"S0 = 0;"

Enable Ack Polling (timer 2)
"T2REQ = 0;"
"T2EN = 1;"

Send stop condition
"S1 = 0xD0;"

arbitration lost
(AL ==1)? T

Acknowledged
(LRB == 0)?

F

F

T

Read mode
(buffer.mode)?

Set direction to RX
"TRX = 0;"

Dummy write to start read
clock

"S0 = 0x00;"

move to next state
"state = 1;"

Set direction to RX
"TRX = 0;"

Read I2C shift register
buffer.rxptr[buffer.index++] =

S0;

if more data to
read

 (index < size)?

Send Dummy write
"S0 x00;"

Send Stop contion
"S1 = 0xD0;"

Transaction complete
"buffer.rxpend = 0;"

Reset State machine
"state = 0;"

TF

return

state '1''0'

T
more data to

write
(index < size)?

Write data to I 2C shift register
"S0=buffer.txptr[buffer.index++];"

Send Stop contion
"S1 = 0xD0;"

Transaction complete
"buffer.txpend = 0;"

FT

disable interrupt

F

Figure 8. Software Flow Diagram of I2C routines (cont)

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 6 APN7515N0498A

5.0 LISTING FOR M37515 IIC FIRMWARE

-----------------LISTING FOR M37515.C---------------------------

// M37515 Demo Board - Mitsubishi Electronics America
// Board Designed by Mark Gould
// Firmware Programmed by Howard Chan
// Version 0.1 3/12/98
// Version 0.5 3/13/98
// Version 0.9 3/14/98
// Version 1.0 3/24/98
// --
// Mini App Note: The following code is designed for the M37515 board.
// The sample firmware consists of the following files:
// m37515.h - Declaration of SFR registers.
// m37515.c - Main Source code. Also sample of Multi EEprom page write and
// read.
// iic.h - header file to include to use IIC & EEprom function
// iic.c - IIC routines for Master Read, Write, & Ack Polling.
// func.h - header file to include to use AD-functions and timer init.
//
// The code below, simply intializes the MCU, the Timer (AD-sampling) and the IIC system
// Then a loop is used to write a block of more than 8 words to the function
// WriteEEprom which can handle a maximum of 8 bytes at a time (limitation of EEprom
// refer to Microchip 24C01B Serial EEprom Data Sheet.) Then the Target buffer
// is cleared of old data. The Seek function is called to move the EEprom
// address pointer to the first byte to be read. Where ReadEEprom is used to
// Read the consecutive block(Read have no limitation). Finally the main()
// waits forever, as a timer 1 interrupt occurs to sample the 10-bit AD data.
//
// NOTE: The while loop (EX. while(SeekEEprom(0x20));) is used, because the EEprom
// functions return a '1' if the IIC is busy with a current read or write. Thus
// it waits till it can perform the transaction before continuing.
//
#pragma language=extended

#include "iic.h"
#include "func.h"

//---------Globals----------------------
const char data[] = {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E'};

char RXbuffer[sizeof(data)]; // This buffer will accommidate the data above

//----------Main function -----------------

void main(void) {
 char i; // just a temp storage variable
 char size;

 Mcuinit(); // Initialize MCU registers & ports
 Timerinit(); // Intialize timer1 for AD-sampling
 IICinit(); // Initialize IIC and timer2 (IIC)

 for(i = 0; i < sizeof(data); i += 8) {
 if(i < sizeof(data) - 8) // If more than 8 bytes then
 size = 8; // Write 8 bytes at a time
 else // else
 size = sizeof(data) - i; // Write remaining bytes
 while(WriteEEprom(&data[i],0x20 + i,size)); // write data to EEprom
 }
 for(i = 0; i < sizeof(data); i++) // Clear RXbuffer
 RXbuffer[i] = 0;

 while(SeekEEprom(0x20)); // Move EEprom address pointer to 1st byte to read
 while(ReadEEprom(RXbuffer,sizeof(data))); // Read EEprom data

 while(1); // Wait here
}

-----------------LISTING FOR IIC.H---------------------------

#ifndef IIC

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 7 APN7515N0498A

#define IIC 0

// Function Declarations for EEprom
char WriteEEprom(void *dsptr, unsigned char address, unsigned char size);
char SeekEEprom(unsigned char address);
char ReadEEprom(void *dsptr, unsigned char size);
void Delay(int time);

// Function Declarations for IIC
void IICinit(void);
char MasterIIC(void *dsptr, char slvaddr, char datasize, char RW);
interrupt [0xF0 - 0xDC] void SMBus_intr(void);
interrupt [0xE8 - 0xDC] void timer2_intr(void);

#endif

-----------------LISTING FOR IIC.C---------------------------

// M37515 Demo Board - Mitsubishi Electronics America
// Firmware Programmed by Howard Chan
// Version 0.1 3/12/98
// Version 0.5 3/13/98
// Version 0.9 3/14/98
// Version 1.0 3/24/98
// --
// Mini App Note: The following routines are used for interfacing with
// the M37515 IIC hardware. The main engine is in the MasterIIC() function
// and the SMBus_intr() function. The others are just application functions for
// EEprom. NOTE: Slave mode hasn't been implemented yet.
//
//

#include "m37515.h"
#include <intr740.h>

//-------Definitions-------------
#define WRITE 0 // Write
#define READ 1 // Read
#define NULL 0 // Null
#define IIC_TIME 0x01 // IIC polling time = f(Xin)

//-------Buffer Global-----------

struct {
 char *rxptr; // Rx Data pointer NOTE: should have seperate pointers
 char *txptr; // Tx Data pointer to prevent accidental overwrite.
 char index; // index of data
 char size; // size of data
 char address; // Slave Address
 char mode:1; // '1' - tx mode, '0' - rx mode
 char txpend:1; // Are more TX transactions pending?
 char rxpend:1; // Are more RX transactions pending?
} buffer; // IIC bufferbuffer;

char test5; // Debug Only

struct {
 char clkmode;
} IICparameters;

//--------IIC Functions-----------
// FUNC: void IICinit(void)
// DESC: Initialize IIC system to single master bus.
void IICinit(void) {
 disable_interrupt();
 T2 = IIC_TIME; // Set IIC Time
 T2REQ = 0; // Reset Timer 2 Interrupt Request
 T2EN = 0; // Disable Timer 2 Interrupt (Called when Polling required)

 S2 = 0xC5; // 11000101b - Set Clock mode & NACK return mode
 // ||||||||
 // |||+++++-- 100 @ Standard Clock Mode
 // ||+------- FAST: 0 - Standard Clock Mode
 // |+-------- ACK bit: 1 - ACK non-return mode
 // +--------- ACK: 1 - No ACK clock sent
 S1 = 0x10; // 00010000b - Hold Scl to high
 // ||||||||

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 8 APN7515N0498A

 // ||||++++-- Don't Care
 // |||+------ PIN: 1 - Clr IRQ for next INT
 // ||+------- BB: 0 - Send Stop Condition
 // |+-------- TRX: 0 - Recieve Mode
 // +--------- MST: 0 - Slave Mode (Don't generate start or stop)
 S1D = 0x50; // 01010000b - Disable communications and set ports
 // ||||||||
 // |||||+++-- Bit counter - Don't Use
 // ||||+----- ES0: 0 - Disable S0 IIC
 // |||+------ ALS: 1 - Free form (EEprom)
 // ||+------- SAD: 0 - 7-bit address
 // |+-------- TSEL: 1 - P24 & P25
 // +--------- TISS: 0 - CMOS input
 // ICON & IREQ Setting
 IICREQ = 0; // Clear interrupt request
 IICEN = 1; // '1'- Enable, '0' Disable IIC interrupt

 enable_interrupt();
}

// FUNC: void Delay(int time)
// DESC: Add delay
// time: Lenth of delay: (Actual time hasn't been calculated.
void Delay(int time) {
 int i;
 for(i = 0; i<time; i++);
}

// FUNC: char MasterIIC(void *dsptr, char slvaddr, char datasize, char RW)
// DESC: Access IIC bus as Master transaction
// return: "0" - successful transaction, "1" - Read or Write Pending, Transaction denied
// dsptr: pointer to a data structure to write to IIC.
// slvaddr: slave address of device on bus.
// size: total size of data transcation
// RW: "0" - Write mode, "1" - Read mode;
char MasterIIC(void *dsptr, char slvaddr, char datasize, char RW) {
 if (buffer.rxpend || buffer.txpend)
 return 1; // '1' - Read or Write is still pending

 ES0 = 0; // Disable IIC
 ACKbit = !RW; // '1' = ACK non-return mode, '0' = ACK return mode
 S1 = 0x10; // 00010000b - Hold Scl to high
 // ||||||||
 // ||||++++-- Don't Care
 // |||+------ PIN: 1 - Clr IRQ for next INT
 // ||+------- BB: 0 - Send Stop Condition
 // |+-------- TRX: 0 - Recieve Mode
 // +--------- MST: 0 - Slave Mode (Don't generate start or stop)
 ES0 = 1; // ES0: 1 - Enable IIC

 S0 = (slvaddr << 1) | (RW & 0x01); // Set Slave address and transfer direction
 // SSSSSSSR
 // ||||||||
 // |||||||+-- RW#: 0 - Write mode, '1' - Read mode
 // +++++++--- Slave Address
 S1 = 0xF0; // 11110000b - Send Start Condition
 // ||||||||
 // ||||++++-- Don't Care
 // |||+------ PIN: 1 - Clr IRQ for next INT
 // ||+------- BB: 1 - Send Start Condition
 // |+-------- TRX: 1 - Transmit Mode
 // +--------- MST: 1 - Master Mode (generate start or stop)

 buffer.address = (slvaddr << 1) | (RW & 0x01); // Set Slave address and direction
 buffer.size = datasize; // Set total size of ds
 buffer.index = 0x00; // Set index to point to first data
 if(RW) { // if RW = '1' then read
 buffer.mode = 1; // '1' Read mode
 buffer.rxpend = 1; // '1' Read pending
 buffer.rxptr = (char *)dsptr; // Set Rx pointer to dsptr
 } else {
 buffer.mode = 0; // '0' Write mode
 buffer.txpend = 1; // '1' Write pending
 buffer.txptr = (char *)dsptr; // Set Tx pointer to dsptr
 }
 return 0; // '0' - Transaction complete
}

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 9 APN7515N0498A

// FUNC: char WriteEEprom(void *dsptr, unsigned char address, unsigned char size)
// DESC: Write data to IIC bus via Buffer.
// NOTE: The Microchip 24C01B Serial EEprom has only a 8-byte write page.
// So the maximum write size per block is 8. For data that is larger than
// 8 bytes, Make subsequent calls to this function with the address incremented.
// return: "0" - successful transaction, "1" - Read or Write Pending, Transaction denied
// dsptr: pointer to a data structure to write to IIC.
// address: address of device or memory to write.
// size: total size of data. (Size limit to 8-bytes at a time)
char WriteEEprom(void *dsptr, unsigned char address, unsigned char size) {
 static char EEbuf[9]; // 8 data bytes + 1 EEprom address byte
 char i;

 if (buffer.rxpend || buffer.txpend)
 return 1; // '1' - Read or Write is still pending
 EEbuf[0] = address; // Set EEprom address

 for(i = 0; (i < size) && (i < 8); i++) // Copy data to write buffer
 EEbuf[i + 1] = ((char *)dsptr)[i];

 return MasterIIC(EEbuf, (0xA0 >> 1), size + 1, WRITE);
}

// FUNC: char SeekEEprom(unsigned char address)
// DESC: Move EEprom pointer to correct address
// return: "0" - successful transaction, "1" - Read or Write Pending, Transaction denied
// address: address of device or memory to read.
char SeekEEprom(unsigned char address) {
 static unsigned char data;
 data = address; // Ensure that data has an address during interrupts
 return MasterIIC(&data, (0xA0 >> 1),1,WRITE);
}

// FUNC: char ReadEEprom(void *dsptr, unsigned char size)
// DESC: Read data to IIC bus via Buffer
// return: "0" - successful transaction, "1" - Read or Write Pending, Transaction denied
// dsptr: pointer to a data structure to read to IIC.
// address: address of device or memory to read.
// size: total size of data. (No size limit)
char ReadEEprom(void *dsptr, unsigned char size) {
 return MasterIIC(dsptr, (0xA0 >> 1), size, READ);
}

// FUNC: interrupt [0xE8 - 0xDC] void timer2_intr(void)
// DESC: This interrupt is used for ACK polling.
interrupt [0xE8 - 0xDC] void timer2_intr(void) {
 disable_interrupt(); // Initiate Acknowledge Polling
 ES0 = 0; // ES0: 0 - Enable IIC
 S1 = 0x10; // 00010000b - Hold Scl to high
 // ||||||||
 // ||||++++-- Don't Care
 // |||+------ PIN: 1 - Clr IRQ for next INT
 // ||+------- BB: 0 - Send Stop Condition
 // |+-------- TRX: 0 - Recieve Mode
 // +--------- MST: 0 - Slave Mode (Don't generate start or stop)
 // Delay(1);
 ES0 = 1; // ES0: 1 - Enable IIC

 S0 = buffer.address;// Set Slave address and transfer direction
 // SSSSSSSR
 // ||||||||
 // |||||||+-- RW#: 0 - Write mode, '1' - Read mode
 // +++++++--- Slave Address
 S1 = 0xF0; // 11110000b - Send Start Condition
 // ||||||||
 // ||||++++-- Don't Care
 // |||+------ PIN: 1 - Clr IRQ for next INT
 // ||+------- BB: 1 - Send Start Condition
 // |+-------- TRX: 1 - Transmit Mode
 // +--------- MST: 1 - Master Mode (generate start or stop)
 T2EN = 0; // Disable Timer 2 Interrupt
 enable_interrupt();
}

// FUNC: interrupt [0xF0 - 0xDC] void SMBus_intr(void)
// DESC: Interrupt call services the IIC bus as a Master.
interrupt [0xF0 - 0xDC] void SMBus_intr(void) {
 static char state; // Internal State counter

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 10 APN7515N0498A

 disable_interrupt();
 if(AL == 1) { // If bus arbitration is lost
 S2 = 0xC5; // 11000101b - return NACK return mode
 // ||||||||
 // |||+++++-- 100 @ Standard Clock Mode
 // ||+------- FAST: 0 - Standard Clock Mode
 // |+-------- ACK bit: 1 - ACK non-return mode
 // +--------- ACK: 1 - ACK clock sent
 S0 = 0x00; // Flush buffer with dummy data(like a read)
 }

 if(LRB) { // If no ACK then Poll again.
 test5++; // No Ack flag
 T2REQ = 0; // Reset Timer 2 Interrupt Request
 T2EN = 1; // Enable Ack Polling (Timer 2)
 S1 = 0xD0; // 11010000b - Send Stop condition
 } else
 if(buffer.mode) {
 switch(state) {
 case 0:
 TRX = 0; // Set direction to Rx
 S0 = 0x00; // Dummy write to start next read
 state = 1; // move to next state
 break;
 case 1:
 TRX = 0; // Set direction to Rx
 buffer.rxptr[buffer.index++] = S0; // Read IIC shift reg.
 if (buffer.index < buffer.size) { // If more data then
 S0 = 0x00; // Dummy write to start next read
 state = 1; // Move to next state
 } else {
 S1 = 0xD0; // 11010000b - Send Stop condition
 // ||||||||
 // ||||++++-- Don't Care
 // |||+------ PIN: 1 - Clr IRQ for next INT
 // ||+------- BB: 0 - Send Stop Condition
 // |+-------- TRX: 1 - Transmit Mode
 // +--------- MST: 1 - Master Mode
 buffer.rxpend = 0; // Transaction complete
 state = 0; // Reset State Machine
 }
 break;
 default:
 state = 0; // Reset State Machine
 S1 = 0xD0; // Send Stop condition
 buffer.rxpend = 0; // RX transaction is complete
 }
 } else {
 //--------------Write Mode---------------
 if(buffer.index < buffer.size) { // If no more data to flush
 S0 = buffer.txptr[buffer.index++]; // Write data to IIC shift reg.
 } else {
 S1 = 0xD0; // 11010000b - Send Stop condition
 // ||||||||
 // ||||++++-- Don't Care
 // |||+------ PIN: 1 - Clr IRQ for next INT
 // ||+------- BB: 0 - Send Stop Condition
 // |+-------- TRX: 1 - Transmit Mode
 // +--------- MST: 1 - Master Mode
 buffer.txpend = 0; // Transcation complete
 state = 0; // Reset State Machine
 }
 }
 enable_interrupt();
}

-----------------LISTING FOR FUNC.H---------------------------

#ifndef FUNC
#define FUNC 0

// Function Declarations
void Mcuinit(void);
void Timerinit(void);

void ShowLED(unsigned int value);
unsigned int Analog(unsigned char channel);

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 11 APN7515N0498A

// Interrupts
interrupt [0xEA - 0xDC] void timer1_intr(void);

#endif

-----------------LISTING FOR FUNC.C---------------------------

// M37515 Demo Board - Mitsubishi Electronics America
// Firmware Programmed by Howard Chan
// Version 0.1 3/12/98
// Version 0.5 3/13/98
// Version 0.9 3/14/98
// Version 1.0 3/24/98
// --
// Mini App Note: The following routines are used for interfacing with
// the M37515 10-bit A-D, timers, and LEDs.
//
// The 10-bit A-D routine is very simple. It simply sets the channel bits
// to read and clears the start conversion bit. Then the bit is polled for
// A-D complete status. Then the AD-Hi must be read first for an 10-bit
// conversion, else read the AD-lo first and discard the AD-Hi for an 8-bit read
//
// For timers, just set the timer1 registers for the value to be loaded after
// every underflow, and set the interrupt vector for the appropriate ISR.
// Below is the formula used to calculate the time.
// f(Xin)/16 * (TIME) = PRE12 * <T1 or T2>;
//
// where f(Xin) = Input Xtal Frequency (Hz)
// TIME = Time of overflow in (secs)
// PRE12 = Prescaler value to load that will affect timer T1 and T2
// T1 or T2 = Timer value to be loaded on timer underflow.
//
// The LED ports (pins P13-P17) can sink up to 15 mA, so an external driver
// is not necessary. Just tie the LED to the port, and write a '0' to the
// P1 register to light the LED.

#include "m37515.h"
#include <intr740.h>

//----------Definitions ----------------
#define AD10BIT 1 // 1: 10-bit A-D, 0: 8-bit A-D
#define ADSEL_MSK 0x07 // Mask for Analog inputs xxxxxAAA
#define ADCNV_MSK 0x10 // Mask for AD conversion xxxAxxxx
#define SAMPLE_TIME 0x08 // Sample time for AD input - about 8 ms.
#define LEDRANGE 0x03ff // Full scale range of LED output
#define RANGE80 0x333 // 0.8 * LEDRANGE
#define RANGE60 0x266 // 0.6 * LEDRANGE
#define RANGE40 0x199 // 0.4 * LEDRANGE
#define RANGE20 0xCC // 0.2 * LEDRANGE
#define RANGE00 0x10 // 0.01 * LEDRANGE

unsigned int test; // Global test variables
int analog1, analog2; // Watch Variables, for Analog 1 & 2

// FUNC: void ShowLED(unsigned int value)
// DESC: Output values to LEDs as a percentage 20, 40, 60, 80, 100
// value: value to output to LEDs
void ShowLED(unsigned int value) {

// Output LEDs via trickle method
// '0' - on, '1' - off
LED100 = (value >= RANGE80) ? 0 : 1; // 80 - 100 percent
LED80 = (value >= RANGE60) ? 0 : 1; // 60 - 79 percent
LED60 = (value >= RANGE40) ? 0 : 1; // 40 - 59 percent
LED40 = (value >= RANGE20) ? 0 : 1; // 20 - 39 percent
LED20 = (value > RANGE00) ? 0 : 1; // 00 - 19 percent

}

// FUNC: unsigned int Analog(unsigned char channel)
// DESC: Read Channel of A/D port NOTE: Possible bit manipulation due to high bits.
// return: Results of 10-bit A-D conversion
// channel: select AD channel to read from 0 - 7
unsigned int Analog(unsigned char channel) {
 union {

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 12 APN7515N0498A

 unsigned int word;
 unsigned char byte[2];
 } adword;
 ADCON = ADSEL_MSK & channel; // Mask correct channel and start conversion
 // ADCON &= 0xEF; // Start Conversion (zero bit 4)
 while(!(ADCON & ADCNV_MSK)); // wait till conversion complete (bit 4)
#if AD10BIT
 adword.byte[1] = ADH; // convert ADH & ADL to an integer (10-bit)
#endif
 adword.byte[0] = ADL; // NOTE: ADL
 return adword.word; // Return 10-bit A/D value
}

// FUNC: void battery(void)
// DESC: A function that simply samples AD channel 0 & 1 and outputs
// the first 8-bit to P0 and last 2-bits + channel to P1;
char port;
void battery(void) {
 // char port;
 char temp0,temp1;
 union {
 unsigned int word;
 unsigned char byte[2];
 } ad[2];

 ad[0].word = Analog(0); // Evaluate AD #0
 ad[1].word = Analog(1); // Evaluate AD #1

 // DEBUG VARIABLES
 analog1 = ad[0].word;
 analog2 = ad[1].word;

 port = (ad[1].word >= ad[0].word) ? 1:0;

 temp0 = ad[port].byte[0]; // Set low byte
 temp1 = (0xf8 & P1) | (0x03 & ad[port].byte[1]); // Set high byte last 2 bits.
 temp1 |= (port) ? 0x04: 0; // Set bit for port. 1 - port 1, 0 - port 0

 P0 = temp0; // Place data on the bus (low)
 P1 = temp1; // (high)
}

// FUNC: interrupt [0xEA - 0xDC] void timer1_intr(void)
// DESC: Interrupt call samples AD port #0 and displays data to LED
interrupt [0xEA - 0xDC] void timer1_intr(void) {
 static char samp[2]; // Static variable assignments.
 static char i;
 char button;
 disable_interrupt();

 // Debounce routine
 samp[i^=0x01] = P4.1; // store sample & index to next sample.
 if(samp[0]==samp[1])
 button = samp[0]; // Update button status if same.

 // Battery interrupt
 if(button == 0)
 battery();

 // Sample Pot
 test = Analog(2); // For Debug Use
 ShowLED(test); // Display Analog results to LED
 enable_interrupt();
}

//-------------------Initialization functions ------------

// FUNC: void Timerinit(void)
// DESC: Initialize Timer 1 interrupt for A-D use.
void Timerinit(void) {
 disable_interrupt();
 PRE12 = 0xff; // SET Pre-scaler for timer 1 & 2
 T1 = SAMPLE_TIME; // Set AD sample Time
 T1REQ = 0; // Reset Timer 1 Interrupt Request
 T1EN = 1; // Enable Timer 1 Interrupt
 enable_interrupt();
}

M37515: Interfacing with EEPROM using I2C M37515

Jul-98 Mitsubishi Electronics 13 APN7515N0498A

// FUNC: void Mcuinit(void)
// DESC: Initialize Mcu ports, cpu mode and AD-mode
void Mcuinit(void) {
 disable_interrupt();

 CPUM = 0x04;
 /* Set CPU mode register */
 /* 00000100B */
 /* |||||||| */
 /* ||||||++--------------- PROCESSOR MODE BIT */
 /* |||||| 00 : SINGLE CHIP MODE */
 /* |||||+----------------- STACK PAGE IN PAGE 1 */
 /* |||+------------------- PORT Xc : I/O PORT FUNC. */
 /* ||+-------------------- MAIN CLOCK Xin-Xout : EXECTE */
 /* ++--------------------- COUNTER SOURCE : F(Xin)/2 */

 P0D = 0xFF; /* 11111111B (1:OUTPUT, 0:INPUT) */
 /* |||||||| */
 /* |||||||+--------------- DATA0 */
 /* ||||||+---------------- DATA1 */
 /* |||||+----------------- DATA2 */
 /* ||||+------------------ DATA3 */
 /* |||+------------------- DATA4 */
 /* ||+-------------------- DATA5 */
 /* |+--------------------- DATA6 */
 /* +---------------------- DATA7 */
 P0 = 0x00;

 P1D = 0xFF; /* 11111111B (1:OUTPUT, 0:INPUT) */
 /* |||||||| */
 /* |||||+++--------------- No Use */
 /* ||||+------------------ LED0 */
 /* |||+------------------- LED1 */
 /* ||+-------------------- LED2 */
 /* |+--------------------- LED3 */
 /* +---------------------- LED4 */
 P1.0 = 0x00;

 P2D = 0xFF; /* 11111111B (1:OUTPUT, 0:INPUT) */
 /* |||||||| */
 /* ||||||++--------------- No Use */
 /* |||||+----------------- SMBus Clock */
 /* ||||+------------------ SMBus Data */
 /* |||+------------------- EEprom IIC Data */
 /* ||+-------------------- EEprom IIC Clk */
 /* |+--------------------- No Use */
 /* +---------------------- No Use */

 P3D = 0x00; /* 00000000B (1:OUTPUT, 0:INPUT) */
 /* |||||||| */
 /* |||||||+--------------- AN0(Voltage +) */
 /* ||||||+---------------- AN1(Voltage -) */
 /* |||||+----------------- AN2(POT) */
 /* +++++------------------ No Use */

 ADCON = 0x00;
 /* Set A-D ctrl reg. */
 /* 00000000B,ADCON */
 /* |||||||| */
 /* |||||+++--------------- ANALOG INPUT PIN SELECT */
 /* ||||| */
 /* ||||| */
 /* ||||+------------------ NO USE */
 /* |||+------------------- A/D CONVERSION COMPLETION BIT */
 /* +++-------------------- NO USE */

 enable_interrupt();
}

