

A CRYPTANALYSIS OF THE TINY

 ENCRYPTION ALGORITHM

by

 VIKRAM REDDY ANDEM

 A THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in the
Department of Computer Science

in the Graduate School of
The University of Alabama

TUSCALOOSA, ALABAMA

2003

Submitted by Vikram Reddy Andem in partial fulfillment of the requirements for

the degree of Master of Science specializing in Computer Science.

Accepted on behalf of the Faculty of the Graduate School by the thesis

committee:

 Kenneth G. Ricks, Ph.D.

 Sibabrata Ray, Ph.D.

 Randy K. Smith, Ph.D.

 Phillip G. Bradford, Ph.D.
 Chairperson

 David W. Cordes, Ph.D.
 Department Chairperson

 Date

 Ronald W. Rogers, Ph.D.
 Dean of the Graduate School

 Date

ii

ACKNOWLEDGMENTS

It is difficult to overstate my gratitude to my advisor, Dr. Phillip Bradford. With

his enthusiasm, his inspiration, and his great efforts to explain things clearly and simply,

he helped to make cryptography fun for me. Throughout my thesis writing period, he

provided encouragement, sound advice, good teaching, good company, and lots of good

ideas. I would have been lost without him.

I am very fortunate to have Dr. Randy Smith and Dr. Sibabrata Ray on my thesis

committee. Their guidance and feedback were crucial to my work. I want to thank

Dr. Kenneth Ricks for serving on my thesis committee, and for providing valuable

feedback.

Last and most importantly, I wish to thank my parents, Venkat Reddy Andem and

Vasantha Reddy Andem. They bore me, raised me, supported me, taught me, and loved

me.

iii

CONTENTS

ACKNOWLEDGMENTS……………………………………………………..…………iii

LIST OF FIGURES………………………………………………………………….…...vi

ABSTRACT………………………………………………………………………….....viii

1 INTRODUCTION …………………………………………………………………..1

1.1 Motivation …………………………………………………………………...….1

1.2 State of the art ……………………………………………………..………...….1

1.3 Preliminaries…………………………………………………………………….2

1.4 Research Study……………………………………………………………….….3

1.5 Organization of the Thesis ……………………………………...........................3

2 MOTIVATION FOR RESEARCH………………………………………………. …4

2.1 Background………………………………………………………………..…….4

2.2 Tiny Encryption Algorithm………………………………….……………..……4

2.3 Technique Developed by Inventors…………………………………...……..….5

2.3.1 Encryption Routine…………………………………………………….….5

2.3.2 Decryption Routine……………………………………………………..…9

2.4 Extensions of Tiny Encryption Algorithm……………………………………..11

2.5 Block TEA………………………………………………...……………...…....15

iv

3 CRYPTANALYSIS …………………………………………………………….…..17

3.1 Attacks………………………………………………………………………....18

3.1.1 Cipher text only attack ………………………………………………..18

3.1.2 Known plaintext attack……………………… …….…………………18

3.1.3 Chosen plaintext attack………………………………….………….…18

3.2 Differential Cryptanalysis………………………………………………...……19

3.3 Related Key Cryptanalysis...……………..………………………………….…19

3.3.1 Attack one……………………………………………………….…….20

3.3.2 Attack two……………………………………………………………..20

3.4 Impossible Differential Cryptanalysis………………………………………....20

3.5 Equivalent Keys………………………………………………………………..21

3.6 First Correction Made by the Designers…………………………………..…...23

3.7 Comparison of TEA and XTEA with the Equivalent Keys……………………24

3.8 Second Correction Made by the Designers…………………………………….24

3.9 Intermediate Cipher Text Values for Small Key Pair Differences………...…..25

3.10 Statistical Analysis…………………………………………………………….27

3.11 Observations…………………...……………………………………………...40

4 SUMMARY AND CONCLUSION………………………………………………...…41

4.1 Contributions of the Thesis………………………………………….……….....41

4.2 Future Work……………………………………………………………….……41

REFERENCES…………………………………………………………………………..42

APPENDIX IMPLEMENTATION……………………………………………..……..43

v

 LIST OF FIGURES

2.1 Encode routine …………………………………………………………………….....5

2.2 The abstract structure of TEA encryption routine ……………………..…………….6

2.3 An abstraction of i-th cycle of TEA ………………………………………………….8

2.4 Decode routine……………………………………………………………………..…9

2.5 The abstract structure of TEA decryption routine………………………………......10

2.6 XTEA routine……………………………………………………………….……….12

2.7 An abstraction of i-th cycle of XTEA……………………………………………….13

2.8 Round key generation algorithm…………………………………………………….14

2.9 Block TEA routine…………………………………………………………………..15

3.1 Comparison of TEA and XTEA with the equivalent keys………………………….24

3.2 Sample output of data obtained by linearly incrementing a single bit in the keys
 k[0], k[1], k[2] and k[3] on an Input data (for v = 00000000 00000000)..................26

3.3 Decimal equivalent values of the encoded cipher texts……………………………..27

3.4 Histogram of the cipher text values in column one (C1)……………………………28

3.5 Comparison of column one (C1) with column three (C3)…………………………..29

3.6 Comparison of columns one-three with column one-five…………………………...30

3.7 Comparison of cipher text values in each column with the cipher text values in
 other columns………………………………………………………….....................31

3.8 3D plot of cipher text values in columns C1, C3, and C5…………………………..32

3.9 3D surface plot of cipher text values in columns C1, C3, and C5…………………..33

vi

3.10 3D wire frame plot of cipher text values in columns C1, C3, and C5……………...34

3.11 3D plot of cipher text values in columns C2, C4, and C6………………….………35

3.12 3D surface plot of cipher text values in columns C2, C4, and C6…………………36

3.13 3D wire frame plot of cipher text values in columns C2, C4, and C6……………..37

3.14 Normal probability plot for columns C1, C3, C5, C7……………………………..38

3.15 Normal probability plot for columns C2, C4, C6, C8……………………………..39

vii

 ABSTRACT

The Tiny Encryption Algorithm (TEA) is a cryptographic algorithm designed to

minimize memory footprint and maximize speed. It is a Feistel type cipher that uses

operations from mixed (orthogonal) algebraic groups. This research presents the

cryptanalysis of the Tiny Encryption Algorithm. In this research we inspected the most

common methods in the cryptanalysis of a block cipher algorithm. TEA seems to be

highly resistant to differential cryptanalysis, and achieves complete diffusion (where a

one bit difference in the plaintext will cause approximately 32 bit differences in the

cipher text) after only six rounds. Time performance on a modern desktop computer or

workstation is very impressive.

viii

CHAPTER 1

INTRODUCTION

1.1 Motivation

As computer systems become more pervasive and complex, security is increasingly

important. Cryptographic algorithms and protocols constitute the central component of

systems that protect network transmissions and store data. The security of such systems

greatly depends on the methods used to manage, establish, and distribute the keys

employed by the cryptographic techniques. Even if a cryptographic algorithm is ideal

in both theory and implementation, the strength of the algorithm will be rendered useless

if the relevant keys are poorly managed.

1.2 State of the art

Cryptography is the art and science behind the principles, means, and methods for

keeping messages secure. Cryptanalysis is a study of how to compromise (defeat)

cryptographic mechanism. There are two classes of key-based encryption algorithms:

symmetric (or secret-key) and asymmetric (or public-key) algorithms. Symmetric

algorithms use the same key for encryption and decryption, whereas asymmetric

algorithms use different keys for encryption and decryption. Ideally it is infeasible to

compute the decryption key from the encryption key.

 1

 2

Symmetric algorithms can be divided into stream ciphers and block ciphers. Stream

ciphers encrypt a single bit of plain text at a time, whereas block ciphers take a number of

bits (say 64 bits), and encrypt them as a single unit. Symmetric encryption is the

backbone of many secure communication systems. Dozens of symmetric algorithms have

been invented and implemented, both in hardware and software.

1.3 Preliminaries

 The following notation is necessary for our discussion.

• Hexadecimal numbers will be subscripted with “h,” e.g., 10 = 16. h

Bitwise Shifts: The logical shift of x by y bits is denoted by x << y. The logical right

shift of x by y bits is denoted by x >> y.

Bitwise Rotations: A left rotation of x by y bits is denoted by x <<< y. A right rotation

of x by y bits is denoted by x >>> y.

Exclusive-OR: The operation of addition of n-tuples over the field (also known as 2F

exclusive-or) is denoted by x⊕ y.

Integer Addition: The operation of integer addition modulo is denoted by x 2n y.

(where x, y ∈). The value of n should be clear from the context. 2nZ

Integer Subtraction: The operation of integer subtraction modulo is denoted by 2n

x y (where x, y ∈). The value of n should be clear from the context. 2nZ

 3

Feistel ciphers (see Feistel, 1973) are a special class of iterated block ciphers where the

cipher text is calculated from the plain text by repeated application of the same

transformation or round function. In a Feistel cipher, the text being encrypted is split into

two halves. The round function, F, is applied to one half using a sub key and the output of

F is (exclusive-or-ed (XORed)) with the other half. The two halves are then swapped.

Each round follows the same pattern except for the last round where there is often no

swap. The focus of this thesis is the TEA Feistel Cipher.

1.4 Research Study

The Tiny Encryption Algorithm (TEA) is a cryptographic algorithm designed by

Wheeler and Needham (1994). It is designed to minimize memory footprint and

maximize speed. This research presents the cryptanalysis of the Tiny Encryption

Algorithm based on the differential cryptanalysis proposed by Biham and Shamir (1992)

and related-key cryptanalysis proposed by Kelsey, Schneier, and Wagner (1997).

1.5 Organization of the Thesis

The body of the thesis is organized as follows.

 Chapter 2 provides the necessary background and foundation by reviewing

the Tiny Encryption Algorithm developed by the inventors, and the weaknesses pointed

out by Wagner and extensions made by the inventors.

 Chapter 3 introduces the theoretical framework of cryptanalysis for the Tiny

Encryption Algorithm by presenting the common attacks involved in the cryptanalysis of

Block cipher. It also presents the results of this research.

 Chapter 4 presents conclusions and describes possible directions for future work.

CHAPTER 2

MOTIVATION FOR RESEARCH

2.1 Background

Many symmetric block ciphers have been presented in recent years. The Tiny Encryption

Algorithm (TEA) (Wheeler et al., 1994) is a compromise for safety, ease of

implementation, lack of specialized tables, and reasonable performance. TEA can replace

1DES in software, and is short enough to integrate into almost any program on any

computer. Some attempts have been made to find weakness of the Tiny Encryption

Algorithm. The motivation of this research is to study and implement the proposed

attacks on TEA to determine whether such attempts are practically feasible.

2.2 Tiny Encryption Algorithm

The Tiny Encryption Algorithm is a Feistel type cipher (Feistel, 1973) that uses

operations from mixed (orthogonal) algebraic groups. A dual shift causes all bits of the

data and key to be mixed repeatedly. The key schedule algorithm is simple; the 128-bit

key K is split into four 32-bit blocks K = (K[0], K[1], K[2], K[3]). TEA seems to be

highly resistant to differential cryptanalysis (Biham et al., 1992) and achieves complete

diffusion (where a one bit difference in the plaintext will cause approximately 32 bit

differences in the cipher text). Time performance on a workstation is very impressive.

1

DES (Data Encryption Standard), is an encryption algorithm which has been the world wide standard for 20 years. For a full
 description, see [6]

 4

 5

2.3 Technique Developed by Inventors

Wheeler et al. (1994) at the computer laboratory of Cambridge University developed the

TEA encode routine. Figure 2.1 presents the TEA encode routine in C language where

the key value is stored in k[0] – k[2] and data are stored in v[0] – v[1].

2.3.1 Encryption Routine

 void code(long* v, long* k) {
 unsigned long y = v[0], z = v[1], sum = 0, /* set up */
 delta = 0x9e3779b9, n = 32 ; /* a key schedule constant */
 while (n-->0) { /* basic cycle start */
 sum += delta ;
 y += (z<<4)+k[0] ^ z+sum ^ (z>>5)+k[1] ;
 z += (y<<4)+k[2] ^ y+sum ^ (y>>5)+k[3] ; /* end cycle */
 }

 v[0] = y ; v[1] = z ; }

 Figure 2.1. Encode routine.

 6

 Figure 2.2. The abstract structure of TEA encryption routine.

 7

Figure 2.2 shows the structure of the TEA encryption routine. The inputs to the

encryption algorithm are a plaintext block and a key K .The plaintext is P = (Left[0],

Right[0]) and the cipher text is C = (Left[64], Right[64]). The plaintext block is split into

two halves, Left[0] and Right[0]. Each half is used to encrypt the other half over 64

rounds of processing and then combine to produce the cipher text block.

• Each round i has inputs Left[i-1] and Right[i-1], derived from the previous round,

 as well as a sub key K[i] derived from the 128 bit overall K.

• The sub keys K[i] are different from K and from each other.

• The constant delta = 31(5 1)*2- = , is derived from the golden h9E3779B9

 number ratio to ensure that the sub keys are distinct and its precise value has no

 cryptographic significance.

• The round function differs slightly from a classical Fiestel cipher structure in that

 integer addition modulo 2³² is used instead of exclusive-or as the combining

 operator.

 8

 Figure 2.3. An abstraction of i-th cycle of TEA.

 9

Figure 2.3 presents the internal details of the ith cycle of TEA. The round function,

F, consists of the key addition, bitwise XOR and left and right shift operation. We can

describe the output (Left[i +1] , Right[i +1]) of the ith cycle of TEA with the input

(Left[i] ,Right[i]) as follows

Left [i+1] = Left[i] F (Right[i], K [0, 1], delta[i]),

Right [i +1] = Right[i] F (Right[i +1], K [2, 3], delta[i]),

delta[i] = (i +1)/2 * delta,

The round function, F, is defined by

F(M, K[j,k], delta[i]) = ((M << 4) K[j]) ⊕ (M delta[i]) ⊕ ((M >> 5) K[k]).

The round function has the same general structure for each round but is parameterized by

the round sub key K[i]. The key schedule algorithm is simple; the 128-bit key K is split

into four 32-bit blocks K = (K[0], K[1], K[2], K[3]). The keys K[0] and K[1] are used in

the odd rounds and the keys K[2] and K[3] are used in even rounds.

2.3.2 Decryption Routine

void decode(long* v, long* k) {
 unsigned long n = 32, sum, y = v[0], z = v[1],
 delta = 0x9e3779b9 ;
 sum = delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z - = (y<<4)+k[2] ^ y+sum ^ (y>>5)+k[3] ;
 y -= (z<<4)+k[0] ^ z+sum ^ (z>>5)+k[1] ;
 sum -= delta ; }
 /* end cycle */
 v[0] = y ; v[1] = z ; }

 Figure 2.4. Decode routine.

 10

Decryption is essentially the same as the encryption process; in the decode routine the

cipher text is used as input to the algorithm, but the sub keys K[i] are used in the reverse

order.

 Figure 2.5. The abstract structure of TEA decryption routine.

 11

Figure 2.5 presents the structure of the TEA decryption routine. The intermediate value

of the decryption process is equal to the corresponding value of the encryption process

with the two halves of the value swapped. For example, if the output of the nth

encryption round is

 ELeft[i] || ERight[i] (ELeft[i] concatenated with ERight[i]).

Then the corresponding input to the (64-i)th decryption round is

 DRight[i] || DLeft[i] (DRight[i] concatenated with DLeft[i]).

After the last iteration of the encryption process, the two halves of the output

are swapped, so that the cipher text is ERight[64] || ELeft[64], the output of that round is

the final cipher text C. Now this cipher text is used as the input to the decryption

algorithm. The input to the first round is ERight[64] || ELeft[64], which is equal to the

32-bit swap of the output of the 64th round of the encryption process.

2.4 Extensions of Tiny Encryption Algorithm

TEA was extended to XTEA (Extended TEA) by Wheeler et al. (1997). It was proposed

to fix the two minor weaknesses pointed out by Kelsey et al. (1997). Like TEA, XTEA

makes use of arithmetic and logic operations. The first enhancement is to adjust the key

schedule, and the second is to introduce the key material slowly. Figure 2.6 presents the

XTEA routine in C language, where the array v represents the plain text of 2 words, the

array k represents the key of 4 words, and N contains the value of number of cycles.

 12

XTEA(long * v, long * k, long N)
{
unsigned long y = v[0];
unsigned z =v [1];
unsigned DELTA = 0x9e3779b9;

if (N>0)
 {

 /* coding */
 unsigned long limit = DELTA*N;
 unsigned long sum = 0 ;
 while (sum != limit)
 y += (z<<4 ^ z>>5) + z ^ sum + k[sum&3],
 sum += DELTA,
 z += (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 &3] ;
 }

 else
 {

 /* decoding */
 unsigned long sum=DELTA*(-N) ;
 while (sum)
 z -= (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 &3],
 sum -= DELTA,
 y -= (z<<4 ^ z>>5) + z ^ sum + k[sum&3] ;
 }
 v[0]=y;
 v[1]=z ;
 return;

 Figure 2.6. XTEA routine.

 13

 Figure 2.7. An abstraction of i-th cycle of XTEA.

 14

Figure 2.7 shows the internal details of the ith cycle of XTEA routine. The relation

between the output (Left[i+1], Right[i+1]) and the input (Left[i], Right[i]) for the ith

cycle of XTEA is defined as follows:

 Left[i+1] = Left[i] F(Right[i], K[2i-1], delta[i-1]),

 Right[i+1] = Right[i] F(Left[i+1], K[2i], delta[i]),

 delta[i] = (i+1)/2 * delta

The round function, F, is defined by

 F(M, K[*], delta[**]) = ((M<<4) ⊕ (M>>5)) M ⊕ delta[**] K[*].

The round keys are generated according to the algorithm shown in Figure 2.8.

 Split the 128-bit key K into four 32-bit blocks

 K = (K[0], K[1], K[2], K[3]).

 for rounds r = 1,….,64

 if (r is odd) then

 key = K[delta((r-1)/2) & 3];

 else

 if (r is even) then

 key = K[(delta((r/2)>>11) & 3]

 Figure 2.8. Round key generation algorithm.

 15

2.5 Block TEA

Block TEA is a block version of XTEA (Wheeler et al., 1997). Figure 2.9 presents the

Block TEA in C language. It will encode or decode n words as a single block where n > 1.

In Figure 2.9 v represents the n word data vector and k is the four word key.

long Block_TEA(long * v, long n , long * k) {
unsigned long z = v[n-1], sum=0,e,
 DELTA = 0x9e3779b9 ;
long m, p, q ;
if (n>1) {
 /* Coding Part */
 q = 6+52/n ;
 while (q-- > 0) {
 sum += DELTA ;
 e = sum>>2&3 ;
 for (p=0 ; p<n ; p++)
 z = v[p] += (z<<4 ^ z>>5) + z ^ k[p&3^e] + sum ;
 }
return 0 ;

 /* Decoding Part */
 else if (n<-1) {
 n = -n ;
 q = 6+52/n ;
 sum = q*DELTA ;
 while (sum != 0) {
 e = sum>>2 & 3 ;
 for (p = n-1 ; p>0 ; p--) {
 z = v[p-1] ;
 v[p] -= (z<<4 ^ z>>5) + z ^ k[p&3^e] + sum ;
 }
 z = v[n-1] ;
 v[0] -= (z<<4 ^ z>>5) + z ^ k[p&3^e] + sum ;
 sum -= DELTA ; }
 return 0 ; }
 return 1 ; } /* Signal n=0 */

 Figure 2.9. Block TEA routine.

 16

The basic principle of mixing data with the key is kept similar to TEA, but we run

cyclically through the block. The following equation represents the mix operation

 v[n] + = mix(v[n-1],key)

The mix operation is performed along the words of a block and then around the whole

block operation a number of times.

CHAPTER 3

CRYPTANALYSIS

Cryptanalysis is an art of analyzing and breaking ciphers; it is an attempt to take

cipher text produced by an adversary, and produce the plaintext or, better yet, the key.

It is also a relatively new modern science, which has become more and more popular

with an advent of modern cryptography. The term attack in this context has the following

implication: In intuitive terms a (passive) attack on a cryptosystem is any method of

starting with some information about plaintexts and their corresponding cipher texts

under some (unknown) key, and figuring out more information about the plaintexts.

It is possible to state mathematically as follows:

Let the encryption system E is a collection of functions E_K, indexed by keys K,

mapping some set of plain texts P to some set of cipher texts C. Similarly the decryption

system D is a collection of functions D_K such that D_K(E_K(P)) = P for every

plaintext P. Now fix the input functions F (for Plain texts), G (for Keys), and the output

function H (for cipher texts) for n variables. Fix an encryption system E and fix a

distribution of plaintexts and keys. An attack on E using G assuming F giving H with

probability p is an algorithm A with a pair f, g of inputs and one output h, such that there

is probability p of computing h = H(P_1,...,P_n), if we have f = F(P_1,...,P_n) and g =

G(E_K(P_1),...,E_K(P_n)).

 17

 18

3.1 Attacks

In this research we inspected the most common methods applied in the cryptanalysis of a

block cipher algorithm; the following attacks are performed for this research.

3.1.1 Cipher text only attack: An attack against (i.e., an attempt to decrypt) cipher

text when only the cipher text itself is available (i.e., there is no known plaintext nor key

associated with the cipher text), in mathematical notation, a cipher text only attack is one

where F is constant. Given only some information G(E_K(P_1),...,E_K(P_n)) about n

cipher texts, the attack has to have some chance of producing some information

H(P_1,...,P_n) about the plain texts.

3.1.2 Known plaintext attack: The attacker knows or can guess the plaintext for

some parts of the cipher text. The task is to decrypt the rest of the cipher text blocks

using this information. This may be done by determining the key used to encrypt the data

or via some shortcut. In mathematical notation, known plaintext attack has F(P_1,P_2) =

P_1, G(C_1,C_2) = (C_1,C_2), and H(P_1,P_2) depending only on P_2. In other words,

given two cipher texts C_1 and C_2 and one decryption P_1, the known plaintext attack

should produce information about the other decryption P_2.

3.1.3 Chosen plaintext attack: The attacker is able to have any text encrypted with

the unknown key. The task in the chosen plaintext attack is to determine the key used

for encryption.

 19

This research found that TEA is highly resistive to the cipher text only, known plain text,

chosen Plaintext attacks, this research examined plaintexts with one bit difference to find

any similarities in the cipher texts and TEA produced approximately 32 bit differences in

the cipher text for one bit difference in the plaintext just after six rounds.

3.2 Differential Cryptanalysis

 Biham et al. (1992) developed a method of attacking block ciphers, which they call

differential cryptanalysis. This attack is the general method of attacking cryptographic

algorithms. It has exposed the weakness in many algorithms. It looks specifically at

cipher text pairs: pairs of cipher texts whose plain texts have particular differences and

analyzes the evolution of these differences as the plain texts propagate through the rounds

of the encryption algorithm when they are encrypted with the same key. The two plain

texts (with a fixed difference) can be chosen at random as long as they satisfy particular

differences. Then, using the differences in the resulting cipher texts, assign different

probabilities to different keys. As we analyze more and more cipher texts, one key will

emerge as the most probable (correct key).

3.3 Related Key Cryptanalysis

It is similar to differential cryptanalysis, but it examines the differences between keys. In

this attack we need to choose a relationship between a pair of keys, but does not know the

keys themselves. It relies on simple relationship between sub keys in adjacent rounds,

encryption of plain texts under both the original (unknown) key K, and some derived

keys = f(*K K). We need to specify how the keys are to be changed; we may be able to

flip bits in the key without knowing the key. TEA admits several related-key attacks

 20

which arise from the severe simplicity of its key schedule. The following attacks are

discovered by Kelsey et al. (1997).

3.3.1 Attack one: The output of the round function, F, in the even rounds will remain the

same with a probability of nearly 0.5, if we simultaneously flip the next most significant

bit (bit number 30) of K[2] and K[3]. This will yield a 2-round iterative differential

characteristic with probability of 0.5, and thus a 60-round characteristic with probability

302− . Analysis of the discoverers indicate that a 4R differential related-key attack can

break 64-round TEA with one related-key query and about chosen plaintexts. 342

3.3.2 Attack two: This attack is similar to the first attack. Under the key K[0..3] we

request the encryption of (Left[i], Right[i]) and under key

 * 31[0..3] [0..3] (0,2 2 ,0,0)K K= ⊕ ⊕ 26

we request the encryption of (Left[i], Right[i]⊕ 312). Examining the three terms of

F(Right[i] , K[0,1], delta) when bit 31 of Right[i] is flipped along with bits 26 and 31 of

K[1], we see: The high bit of (Right[i] + delta) is always changed, neither change has

any effect on (the value of Right[i] after left shifting four times + K[0]) and half the time,

only the high bit is changed for (the value of Right[i] after right shifting five times +

K[1]). If we choose one key difference it gives a one-cycle iterative differential

characteristic with probability of 0.5.

3.4 Impossible Differential Cryptanalysis

Cryptanalysis with impossible differentials was introduced by Biham et al. (1992) and is

powerful. The normal differential cryptanalysis finds a key using the differential

characteristic with high probability. But, this attack uses the differential cryptanalysis

 21

with probability zero which is called impossible differentials. Initially we need to find an

impossible differential characteristic, we then choose any plain text pairs with the input

difference of the impossible differential characteristic, and obtain the corresponding

cipher text pairs. Using the special property derived from the impossible characteristic we

eliminate the cipher text pairs with the input difference of the impossible differential

characteristic. If we can find no impossible differentials for a cipher, the cipher cannot be

attacked by cryptanalysis with impossible differentials. In the last one or two rounds for

every key value in the key space, we decrypt the cipher text pairs with that key value and

we eliminate the key value from the key space if the differences of the decrypted cipher

text satisfy the output difference of the impossible differential characteristic. We repeat

the above process until the only one key value remains with very high probability.

Generally speaking, the search for impossible differentials is difficult because much

complexity is required to guarantee completeness. Some researchers (e.g., Moon, Hwang,

Lee, Lee, & Lim, 2002) used this method and found the 12-round impossible differential

cryptanalysis of the XTEA and the 10-round impossible differential cryptanalysis of TEA.

They were able to successfully attack 14-round XTEA using the 12-round impossible

differential characteristic with chosen plain texts and encryptions , they were 62.52 852

also successful in attacking 11-round TEA using the 10-round impossible differential

with chosen plain texts and encryptions. This research investigated the 52.52 842

characteristics discovered by Moon et al. (2002) and found it to be true.

3.5 Equivalent Keys

 In a cipher system if the encryption of Plain text with keys K and produces the same *K

cipher text then the two keys are said to be equivalent keys. This can be represented as an

 22

equivalence relation = ()KE P * ()

K
E P . We can define equivalence classes and say that

a pair of keys K and belong to the same equivalence class if they satisfy the above *K

relation. In the design of a good cipher every key which belongs to the equivalence class

should have a distinct mapping of plain text to cipher text and there should not be any

equivalent keys so we expect equivalence classes. As the TEA uses 128-bit key we 2k

expect the TEA cipher to have equivalence classes, but research shows different as 1282

TEA has equivalence classes (there are distinct mappings of plain texts to cipher 1262 1262

text) and not equivalence classes. This weakness is because of the round function 1282

(the core of any feistel cipher) of the TEA, the following explanation gives a clear picture

of why the key space is only 126 and not 128.

 for all values of a, b ∈ 322

Z

 312 = 0, 312

 a = a 312 8 0000000h

So,

 a b = (a ⊕) 80000000h (b ⊕ 8) 0000000h

in the same way the round function can be manipulated to prove

F(M, K[j,k], delta[i]) = F(M, (K[j] ⊕ 8 , K[k] 0000000h ⊕ 8 , delta[i])) 0000000h

This implies that every 128-bit key K = (K[0], K[1], K[2], K[3]) has three equivalent

keys of the form:

 (K[0], K[1], K[2] ⊕ , K[3] 80000000h ⊕) 80000000h

 (K[0] 8 , K[1] ⊕ 0000000h ⊕ 8 , K[2], K[3]) 0000000h

 23

(K[0] 8 , K[1] 8 , K[2] ⊕ 0000000h ⊕ 0000000h ⊕ ,K[3] ⊕) 80000000h 80000000h

this means that even though TEA uses a 128-bit key it produces the same security as a

126-bit key.

The equivalent keys for TEA are as follows

h

h

h

h

00000000 80000000 00000000 00000000

80000000 00000000 00000000 00000000

80000000 00000000 80000000 80000000

00000000 80000000 80000000 80000000

for example, encrypting the plain text () with any of the above 00000000 00000000h

four keys will produce the same cipher text (9327 497C 31 08 hB BBE). The presence of

equivalent keys makes TEA unsuitable for use in a hash function which is based on block

ciphers.

3.6 First Correction Made by the Designers

XTEA was presented to cater the weaknesses and attacks mentioned above by the

designers of TEA, In XTEA the designers have made the following adjustments: first

adjustment was to adjust the key schedule, and the second is to introduce the key material

slowly. Designers have corrected the round function

F(M, K[j,k], delta[i]) = ((M << 4) K[j]) ⊕ (M delta[i]) ⊕ ((M >> 5) K[k]).

to F(M, K[*], delta[**]) = ((M<<4) ⊕ (M>>5)) M ⊕ delta[**] K[*].

This correction brings the following advantages:

• It corrects the mixing proportion of TEA

 24

• Corrects the related-key attacks and equivalence classes for TEA

• Shift of 11 causes the sequence to be irregular, and all 4 keywords are used in the

 first two cycles.

3.7 Comparison of TEA and XTEA with the Equivalent Keys

Plain Text Key Cipher with

 TEA

Cipher with

 XTEA
0000000000000000 0000000080000000

0000000000000000

9327c497 31b08bbe 4f190ccf c8deabfc

0000000000000000 8000000000000000

0000000000000000

9327c497 31b08bbe 57e8c05 50151937

0000000000000000 8000000000000000

8000000080000000

9327c497 31b08bbe 31c4e2c6 347b2de

0000000000000000 0000000080000000

8000000080000000

9327c497 31b08bbe ed69b785 66781ef3

Figure 3.1. Comparison of TEA and XTEA with the equivalent keys.

3.8 Second Correction Made by the Designers

Considering the lack of back propagation in Block TEA the designers have corrected

the corrected the round function (see Wheeler et al., 1998) to make the decoding

difference propagation about as fast as the forward coding mode.

The mix operation along the words off the block

 v[n] + = mix (v[n-1], key)

is corrected to v[m] + =f(v[m-1], v[m+1]).

 25

The corrected round function is given below:

#define MX (z>>5 ^ y<<2) + (y>>3 ^ z<<4) ^ (sum ^ y) + (k[p&3 ^ e] ^ z);

3.9 Intermediate Cipher Text Values for Small Key Pair Differences

In this research we generated and analyzed the cipher texts of TEA and XTEA for the

first 32 rounds. Figure 3.2 presents the sample output of Encoded data (cipher texts)

obtained by linearly incrementing a single bit in the keys k[0], k[1], k[2], and k[3]

with the initial plaint text as “00000000 00000000” (stored in variable v).

 26

 For 1 round: Incrementing k[0] by 1 For 1 round: Incrementing k[1] by 1

Input Data: v = 0x0 0 Input Data: v = 0x0 0
Key = 0x0 0 0 0 Key = 0x0 0 0 0
Encoded data = 0x9e3779b9 dbe8d32f Encoded data = 0x9e3779b9 dbe8d32f
Key = 0x1 0 0 0 Key = 0x0 1 0 0
Encoded data = 0x60a9b239 d3681922 Encoded data = 0x60a9b23b d3681904
Key = 0x2 0 0 0 Key = 0x0 2 0 0
Encoded data = 0xa22ef269 3b005643 Encoded data = 0xa22ef472 3b0077ac
Key = 0x3 0 0 0 Key = 0x0 3 0 0
Encoded data = 0xb199be6 5390bd63 Encoded data = 0xb177cd7 5361f7b2
Key = 0x4 0 0 0 Key = 0x0 4 0 0
Encoded data = 0xd57900a9 761c765a Encoded data = 0xd0348261 bf0475cb
Key = 0x5 0 0 0 Key = 0x0 5 0 0
Encoded data = 0x4b9d76ad c87be75d Encoded data = 0x78b912e8 5da8e081

For 1 round: Incrementing k[2] by 1 For 1 round: Incrementing k[3] by 1
Input Data: v = 0x0 0 Input Data: v = 0x0 0
Key = 0x0 0 0 0 Key = 0x0 0 0 0
Encoded data = 0x9e3779b9 dbe8d32f Encoded data = 0x9e3779b9 dbe8d32f
Key = 0x0 0 1 0 Key = 0x0 0 0 1
Encoded data = 0x60a9b23a d36818f2 Encoded data = 0x60a9b23a d36818f0
Key = 0x0 0 2 0 Key = 0x0 0 0 2
Encoded data = 0xa22f0f86 3aef2213 Encoded data = 0xa22f0fa8 3aef248e
Key = 0x0 0 3 0 Key = 0x0 0 0 3
Encoded data = 0x1832d372 70760ea6 Encoded data = 0x1832bf2b 706f8436
Key = 0x0 0 4 0 Key = 0x0 0 0 4
Encoded data = 0x2281a5bc 5a2d5842 Encoded data = 0x241081d9 f2dee646
Key = 0x0 0 5 0 Key = 0x0 0 0 5
Encoded data = 0x7ae1e4d5 efd753f Encoded data = 0xdf7f4e86 7f98c06c

Figure 3.2. Sample output of data obtained by linearly incrementing a single bit in the
 keys k[0], k[1], k[2] and k[3] on an Input data (for v = 00000000 00000000)

 27

3.10 Statistical Analysis

In the process of obtaining the statistical analysis of cipher texts, this research generated

the decimal equivalent values of the cipher texts, Figure 3.3 shows the sample decimal

values for the data presented in Figure 3.2.

The sample cipher text “0x9e3779b9 dbe8d32f” is converted into decimal equivalent

“-1640531527 -605498577.” The first half’s (right half’s) of these cipher texts are

presented in C1 (column one) and the second half’s in the C2 (column two) of Figure 3.3.

 C1 C2 C3 C4 C5 C6 C7 C8

-1640531527 -605498577 -1640531527 -605498577 -1640531527 -605498577 -1640531527 -605498577

1621733945 -748152542 1621733947 -748152572 1621733946 -748152590 1621733946 -748152592

-1573981591 989877827 -1573981070 989886380 -1573974138 988750355 -1573974104 988750990

186227686 1401994595 186088663 1398929330 405984114 1886785190 405978923 1886356534

-713490263 1981576794 -801865119 -1090226741 578921916 1512921154 605061593 -220273082

1268610733 -931403939 2025394920 1571348609 2061624533 251491647 -545304954 2140717164

854344359 -957555870 -1673779192 1526308994 -1116325002 -1742526255 -954185364 -1862068192

1087031438 -1735034811 -256309480 -572597781 1847554642 -2030806129 44258436 469611766

-64313614 -138505471 -1748090149 742309149 -1132904010 532399513 131391724 -142956448

-439521491 -675609520 -1597352494 1658944802 53213860 -1283373222 -310881722 1388041572

-288533938 1046644421 -857570086 104342583 1868347693 -1364816561 -950789572 1772906066

705612385 -1470293218 -1799445370 -2081306702 320905407 846307797 1706885205 -994706011

-266954684 822361245 -1377216376 466343863 155266191 1704069541 -1789656264 655879417

-821627213 -869439098 -1270231726 797684728 1661384146 -1746972499 1247615357 1982847287

2111440592 -1903384763 -397533970 884071576 -1302073339 186042125 -1081550650 383873538

1045706859 -960021348 -2137051632 1204984913 -891390413 -843364753 -1690199855 -1600387759

1292861132 10529871 431781368 1959522287 -2130054370 -644785874 -849779967 1493707987

-504928969 -1710726408 1977106112 -1091664514 1763425772 1865518537 852397531 1434508078

2119243115 -1804356553 739449770 -922076004 1713640808 -732068127 -605524295 398924691

 Figure 3.3. Decimal equivalent values of the encoded cipher texts.

 28

This research discovered the following properties of generated cipher texts:

o The cipher text values in any column do not start or end at any particular

 sequence nor exhibit any common property even though there generation was

 due to a single bit key difference. This is presented in the Figure 3.4.

 Figure 3.4. Histogram of the cipher text values in column one (C1).

 29

o There are no common properties among the values of the cipher texts generated

 by linearly incrementing only a single bit on k[0] and [1], This is presented in

 Figure 3.5.

Figure 3.5. Comparison of column one (C1) with column three (C3).

 30

o Comparison of cipher text values obtained by incrementing k[0] with k[1] and

 k[2] gave no common attributes, This is presented in Figure 3.6.

 Figure 3.6. Comparison of columns one-three with column one-five.

 31

o There are no attributes which can be derived by making a comparison with

 values any column to values in any other column, This is presented in Figure 3.7

 Figure 3.7. Comparison of cipher text values in each column with the cipher text
 values in other columns.

 32

In order to derive any Meta properties (if present), this research has examined the spatial

distribution of cipher text values for the Left half and the Right half separately. For the

Left half, columns C1, C3, and C5 are compared. Figures 3.8, 3.9, and 3.10 present this

comparison.

 Figure 3.8. 3D plot of cipher text values in columns C1, C3, and C5.

 33

Figure 3.9. 3D surface plot of cipher text values in columns C1, C3, and C5.

 34

Figure 3.10. 3D wire frame plot of cipher text values in columns C1, C3, and C5.

 35

For the Right half, columns C2, C4, and C6 are compared. Figures 3.11, 3.12, and 3.13

present this comparison.

 Figure 3.11. 3D plot of cipher text values in columns C2, C4, and C6.

 36

 Figure 3.12. 3D surface plot of cipher text values in columns C2, C4, and C6.

 37

Figure 3.13. 3D wire frame plot of cipher text values in columns C2, C4, and C6.

 38

This research generated the Normal probability plot for the occurrences of cipher text

values in each column and this is presented in the graph 3.14 for the Left half and

3.15 for the right half.

 Figure 3.14. Normal probability plot for columns C1, C3, C5, C7.

 39

 Figure 3.15. Normal probability plot for columns C2, C4, C6, C8.

 40

3.11 Observations

This research found the encryption of cipher texts with very few rounds (less than six) to

be weak. Encryption of cipher texts with more than six rounds produced a very good

mixture of intermediate values and showed high resistance to cryptanalytic attacks.

With the few exceptions mentioned in section 3.8, this research concludes TEA as a

best fit cryptographic algorithm for small devices where memory and power are primary

concern.

CHAPTER 4

SUMMARY AND CONCLUSIONS

4.1 Contributions of the Thesis:

• This research presented a comprehensive in-depth perceptive of TEA, XTEA, and

 Block TEA.

• This research implemented the TEA, XTEA, and Block TEA.

• This research analyzed the published attacks, weakness of TEA, XTEA, and

 Block TEA.

• This research showed that Block TEA has equivalence classes and not 1272 1282

 equivalence classes.

4.2 Future Work

We feel that cryptanalysis of TEA like feistel ciphers is far from complete task. In this

section we present several directions for future research.

• Finding more equivalent keys (if exists) for TEA.

• Extending the results in this thesis to study other feistel ciphers

• Investigation of key space for other fiestel ciphers.

 41

REFERENCES

Biham, E., & Shamir, A. (1992). Differential cryptanalysis of the data encryption

Standard. New York: Springer-Verlag.

Feistel, H. (1973, May). “Cryptography and computer privacy.” Scientific American, 228.

Kelsey, J., Schneier, B., & Wagner, D. (1997). Related key cryptanalysis of 3-WAY,

Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In Information and
Communications Security—Proceedings of ICICS, 1334.

Mirza, F. (1998). Block ciphers and cryptanalysis. England: Royal Holloway University
 of London, Department of Mathematics.

Moon, D., Hwang, K., Lee, W., Lee, S., & Lim, J. (2002). Impossible differential

cryptanalysis of reduced round XTEA and TEA. In Fast Software Encryption –
Proceedings of the 9th International Workshop.

Schneier,B. (1996). Applied cryptography (2nd ed.). New York: John Wiley & Sons.

Wheeler, D.J., & Needham, R.J. (1994). TEA, a tiny encryption algorithm. In Fast
 Software Encryption – Proceedings of the 2nd International Workshop,1008.

Wheeler, D.J., & Needham, R.J. (1997). Tea extensions. Unpublished manuscript,
 Computer Laboratory, Cambridge University, England.

Wheeler, D.J., & Needham, R.J. (1998). Correction of xtea. Unpublished manuscript,
 Computer Laboratory, Cambridge University, England.

 42

APPENDIX

IMPLEMENTATION

The implementation of TEA used for this research is shown below. Tea.c takes the 64-bit

plain text input in array v and 128-bit key in array k and give the cipher text as output on

execution.

 Tea.c

#include <stdio.h>
void main (int artgc, char **argv, char **env)
{
unsigned long v[2]; /* Plaintext */
unsigned long k[4]; /* Key */
unsigned long w[2]; /* cipher text */

/* Input to Plain Text */
v[0] = 0x12345678; v[1] = 0x33333333;
printf("\n\n\nInput Data: ");
printf (" v = 0x%x %x\n\n", v[0], v[1]);

/* Key */
k[0] = 0x00000000; k[1] = 0x80000000;
k[2] = 0x80000000; k[3] = 0x80000000;
printf ("Key = 0x%x %x %x %x\n\n", k[0], k[1], k[2], k[3]);

/* Now call Encode Routine */
 tea_code (v, k);
 printf ("\nEncoded data = 0x%x %x\n\n", v[0], v[1]);

/* Now call Decode Routine */
 tea_decode (v, k);

 Tea.c

 43

 44

 printf ("\nDecoded data = 0x%x %x\n", v[0], v[1]);
 }

tea_code(long* v, long* k)
 {
 /* long is 4 bytes. */
 unsigned long v0=v[0], v1=v[1];
 unsigned long k0=k[0], k1=k[1], k2=k[2], k3=k[3];
 unsigned long sum=0;
 unsigned long delta = 0x9e3779b9, n=32 ;
 while (n-- > 0) {
 sum += delta ;
 v0 += (v1<<4)+k0 ^ v1+sum ^ (v1>>5)+k1 ;
 v1 += (v0<<4)+k2 ^ v0+sum ^ (v0>>5)+k3 ;
 }
 v[0]=v0 ;
 v[1]=v1 ;
}

tea_decode(long* v, long* k)
 {
 unsigned long v0=v[0], v1=v[1];
 unsigned long k0=k[0], k1=k[1], k2=k[2], k3=k[3];
 unsigned long n=32, sum, delta=0x9e3779b9 ;
 sum=delta<<5 ;

 while (n-- > 0) {
 v1 -= (v0<<4)+k2 ^ v0+sum ^ (v0>>5)+k3 ;
 v0 -= (v1<<4)+k0 ^ v1+sum ^ (v1>>5)+k1 ;
 sum -= delta ;
 }
 v[0]=v0 ;
 v[1]=v1 ;
}

 45

The implementation of XTEA used for this research is shown below. Xtea.c takes the 64-

bit plain text input in array v and 128-bit key in array k and give the cipher text as output

on execution.

 Xtea.c

#include <stdio.h>
void main (int artgc, char **argv, char **env)
{
unsigned long v[2]; /* Plaintext */
unsigned long k[4]; /* Key */
unsigned long w[2]; /* cipher text */

/* Input to Plain Text */
v[0] = 0x12345678; v[1] = 0x33333333;
printf("\n\n\nInput Data: ");
printf (" v = 0x%x %x\n\n", v[0], v[1]);

/* Key */
k[0] = 0x00000000; k[1] = 0x80000000;
k[2] = 0x00000000; k[3] = 0x00000000;
printf ("Key = 0x%x %x %x %x\n\n", k[0], k[1], k[2], k[3]);

tea_code (v, k);
printf ("\nEncoded data = 0x%x %x \n\n", v[0], v[1]);

/* Now call Decode Routine */
tea_decode (v, k);
printf ("\nDecoded data = 0x%x %x \n", v[0], v[1]);}

tea_code(long* v, long* k)
{
 /* long is 4 bytes. */
unsigned long v0=v[0], v1=v[1];
unsigned long k0=k[0], k1=k[1], k2=k[2], k3=k[3];
unsigned long sum=0, delta=0x9e3779b9;

 int n =32;
 unsigned long limit=delta*n;

while (sum!=limit)

 Xtea.c

 46

{

 v0 += (v1<<4 ^ v1>>5) + v1 ^ sum + k[sum&3];
 sum += delta ;

 v1 += (v0<<4 ^ v0>>5) + v0 ^ sum + k[sum>>11 &3];
}

 v[0]=v0 ;
 v[1]=v1 ;
 }

tea_decode(long* v, long* k)
 {
 unsigned long v0=v[0], v1=v[1];
 unsigned long k0=k[0], k1=k[1], k2=k[2], k3=k[3];
 unsigned long sum = 0xc6ef3720;
 unsigned long delta=0x9e3779b9 ;
 int count =32;
 while (count) {
 v1 -= (v0<<4 ^ v0>>5) + v0 ^ sum + k[sum>>11 &3];
 sum -= delta ;
 v0 -= (v1<<4 ^ v1>>5) + v1 ^ sum + k[sum&3];

count = count-1;
}

 v[0]=v0 ;
 v[1]=v1;
 }

In the process of extracting similarities between the intermediate values of the cipher

texts during the 2nd ,4th , 8th ,16th rounds of the encryption process of Xtea, the program

Xtea.java was developed in Java language using the oracle 9i database to store the

intermediate results.

 47

 The Program Xtea.java is presented below.

 Xtea.java

import java.lang.*;
import java.math.*;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import java.sql.*;
import javax.servlet.http.*;

public class wsrg
extends GenericServlet {

 public void service(ServletRequest request, ServletResponse response)
 throws ServletException, IOException {

 // Get print writer
 PrintWriter pw = response.getWriter();

 // Get enumeration of parameter names
 Enumeration e = request.getParameterNames();

 // Display parameter names and values
 String pname1 = (String)e.nextElement();
 pw.print(pname1 + " = ");
 String pvalue1 = request.getParameter(pname1);
 pw.println(pvalue1+"\n");
 String pname2 = (String)e.nextElement();
 pw.print(pname2 + " = ");
 String pvalue2 = request.getParameter(pname2);
 pw.println(pvalue2);
 String pname3 = (String)e.nextElement();
 pw.print(pname3 + " = ");
 String pvalue3 = request.getParameter(pname3);
 pw.println(pvalue3);
 String pname4 = (String)e.nextElement();
 pw.print(pname4 + " = ");
 String pvalue4 = request.getParameter(pname4);
 pw.println(pvalue4);
 String pname5 = (String)e.nextElement();
 pw.print(pname5 + " = ");
 String pvalue5 = request.getParameter(pname5);
 pw.println(pvalue5);

 48

 String pname6 = (String)e.nextElement();
 pw.print(pname6 + " = ");
 String pvalue6 = request.getParameter(pname6);
 pw.println(pvalue6);
 pw.println("display");

 /* String input,seed;

 input=pvalue3;
 if (pvalue3=="") input=pvalue6;
 else input=pvalue3;
 if (pvalue4=="") seed=pvalue5;
 else seed=pvalue4;
 input=input + seed; */
 Xtea a=new Xtea();
 String stri = a.nmain(pvalue3,pvalue5);
 pw.println(stri);
 pw.close();
 }
}

class Xtea
{
 private int _key[];
 private byte _keyBytes[];
 private int _padding;

 int w[] = new int[2];
 static String src1;
 static String keyString1;
 protected static final char hex[] =
 { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };

 public static String nmain(String args,String seed)
 {

 String keyString = "80000000000000008000000080000000";
 keyString1= keyString;
 byte key[] = new BigInteger(keyString, 16).toByteArray();
 Xtea t = new Xtea(key);
 String src = args;

 49

 src1=src;
 src = t.padPlaintext(src);
 byte plainSource[] = src.getBytes();
 int enc[] = t.encode(plainSource, plainSource.length);
 String hexStr = t.binToHex(enc);
 return(hexStr);

 }

 public Xtea(){}

 public Xtea(byte key[])
 {
 int klen = key.length;
 _key = new int[4];
 if (klen != 16) throw new
ArrayIndexOutOfBoundsException(this.getClass().getName() +
": Key is not 16 bytes");

 int j, i;
 for (i = 0, j = 0; j < klen; j += 4, i++)
 key[i] = (key[j] << 24) | (((key[j+1])&0xff) << 16) |
(((key[j+2])&0xff) << 8) | ((key[j+3])&0xff);
 _keyBytes = key;
 }
 public Xtea(int key[])
 {
 _key = key;
 }
 public String toString()
 {
 String tea = this.getClass().getName();
 tea += ": Extended Tiny Encryption Algorithm (XTEA)
 key: " + getHex(_keyBytes);
 return tea;
 }

 public int [] encipher(int v[])
 {

 50

 int y= v[0];
 int z= v[1];
 int sum=0;
 int delta=0x9E3779B9;
 String sttr[]=new String[33];
 int n=32;
 try
 {
 Connection con = null;
 Statement stmt = null;
 ResultSet rs = null;
 Class.forName ("oracle.jdbc.driver.OracleDriver");
 con = DriverManager.getConnection

 ("jdbc:oracle:thin:@mdb.cs.ua.edu:1521:wdb", "reddy001", "Stanf0rd96");

 while(n-->0)
 {
 y += (z << 4 ^ z >>> 5) + z ^ sum + _key[(int)
 (sum&3)];
 sum += delta;
 z += (y << 4 ^ y >>> 5) + y ^ sum + _key[(int)
(sum >>>11) & 3];

 int acd[]= new int[2];
 acd[0] = (int)y;
 acd[1] = (int)z;
 int m= 32-n;
 sttr[m]=binToHex(acd);

 }

 w[0] = (int)y;
 w[1] = (int)z;
 stmt = con.createStatement();

 rs = stmt.executeQuery("insert into finaldata values ('" + src1
+"','"+keyString1+"','"+sttr[1]+"','"+sttr[3]+"','"+sttr[7]+"','"+sttr[15]
+"','"+sttr[31]+"')");
 con.close();
 }

 51

 catch(ClassNotFoundException e)
 {
 System.out.println("Couldn't load database driver: " +
e.getMessage());
 }
 catch(SQLException e)
 {
 System.out.println("SQLException caught: " + e.getMessage());
 }
 return w;
 }

 public int [] decipher(int v[])
 {
 int y=v[0];
 int z=v[1];
 int sum=0xC6EF3720;
 int delta=0x9E3779B9;
 int n=32;
 while (n-->0)
 {
 z -= (y << 4 ^ y >>> 5) + y ^ sum + _key[(sum>>>11) & 3];
 sum -= delta;
 y -= (z << 4 ^ z >>> 5) + z ^ sum + _key[sum &3];
 }
 int w[] = new int[2];
 w[0] = (int)y;
 w[1] = (int)z;
 return w;
 }

 public int [] encode(byte b[], int count)
 {
 int j ,i;
 int bLen = count;
 byte bp[] = b;
 _padding = bLen % 8;
 if (_padding != 0)
 {

 52

 _padding = 8 - (bLen % 8);
 bp = new byte[bLen + _padding];
 System.arraycopy(b, 0, bp, 0, bLen);
 bLen = bp.length;
 }

 int intCount = bLen / 4;
 int r[] = new int[2];
 int out[] = new int[intCount];
 for (i = 0, j = 0; j < bLen; j += 8, i += 2)
 {
 r[0] = (bp[j] << 24) | (((bp[j+1])&0xff) << 16) |
 (((bp[j+2])&0xff) << 8) | ((bp[j+3])&0xff);
 r[1] = (bp[j+4] << 24) | (((bp[j+5])&0xff) << 16) |
(((bp[j+6])&0xff) << 8) | ((bp[j+7])&0xff);
 r = encipher(r);
 out[i] = r[0];
 out[i+1] = r[1];
 break;
 }
 return out;
 }

 public int padding()
 {
 return _padding;
 }

 public byte [] decode(byte b[], int count)
 {
 int i, j;
 int intCount = count / 4;
 int ini[] = new int[intCount];
 for (i = 0, j = 0; i < intCount; i += 2, j += 8)
 {
 ini[i] = (b[j] << 24) | (((b[j+1])&0xff) << 16) |
 (((b[j+2])&0xff) << 8) | ((b[j+3])&0xff);
 ini[i+1] = (b[j+4] << 24) |
 (((b[j+5])&0xff) << 16) | (((b[j+6])&0xff) << 8) | ((b[j+7])&0xff);
 }

 53

 return decode(ini);
 }

 public byte [] decode(int b[])
 {
 int intCount = b.length;
 byte outb[] = new byte[intCount * 4];
 int tmp[] = new int[2];
 int i, j;
 for (j = 0, i = 0; i < intCount; i += 2, j += 8)
 {
 tmp[0] = b[i];
 tmp[1] = b[i+1];
 tmp = decipher(tmp);
 outb[j] = (byte)(tmp[0] >>> 24);
 outb[j+1] = (byte)(tmp[0] >>> 16);
 outb[j+2] = (byte)(tmp[0] >>> 8);
 outb[j+3] = (byte)(tmp[0]);
 outb[j+4] = (byte)(tmp[1] >>> 24);
 outb[j+5] = (byte)(tmp[1] >>> 16);
 outb[j+6] = (byte)(tmp[1] >>> 8);
 outb[j+7] = (byte)(tmp[1]);
 }
 return outb;
 }

 public int [] hexToBin(String hexStr) throws
ArrayIndexOutOfBoundsException
 {
 int hexStrLen = hexStr.length();
 if ((hexStrLen % 8) != 0)
 throw new ArrayIndexOutOfBoundsException
("Hex string has incorrect length, required to be divisible by eight:
 " + hexStrLen);

 int outLen = hexStrLen / 8;
 int out[] = new int[outLen];
 byte nibble[] = new byte[2];

 54

 byte b[] = new byte[4];
 int posn = 0;
 for (int i = 0; i <outLen; i++)
 {
 for (int j = 0; j < 4; j++)
 {
 for (int k = 0; k < 2; k++)
 {
 switch (hexStr.charAt(posn++))
 {
 case '0': nibble[k] = (byte)0; break;
 case '1': nibble[k] = (byte)1; break;
 case '2': nibble[k] = (byte)2; break;
 case '3': nibble[k] = (byte)3; break;
 case '4': nibble[k] = (byte)4; break;
 case '5': nibble[k] = (byte)5; break;
 case '6': nibble[k] = (byte)6; break;
 case '7': nibble[k] = (byte)7; break;
 case '8': nibble[k] = (byte)8; break;
 case '9': nibble[k] = (byte)9; break;
 case 'A': nibble[k] = (byte)0xA; break;
 case 'B': nibble[k] = (byte)0xB; break;
 case 'C': nibble[k] = (byte)0xC; break;
 case 'D': nibble[k] = (byte)0xD; break;
 case 'E': nibble[k] = (byte)0xE; break;
 case 'F': nibble[k] = (byte)0xF; break;
 case 'a': nibble[k] = (byte)0xA; break;
 case 'b': nibble[k] = (byte)0xB; break;
 case 'c': nibble[k] = (byte)0xC; break;
 case 'd': nibble[k] = (byte)0xD; break;
 case 'e': nibble[k] = (byte)0xE; break;
 case 'f': nibble[k] = (byte)0xF; break;
 }
 }
 b[j] = (byte)(nibble[0] << 4 | nibble[1]);
 }

out[i] = (b[0] << 24) | (((b[1])&0xff) << 16) | (((b[2])&0xff) << 8) |
((b[3])&0xff);
 }

 55

 return out;
 }

 public String binToHex(int enc[]) throws
ArrayIndexOutOfBoundsException
 {
 if ((enc.length % 2) == 1)
 throw new ArrayIndexOutOfBoundsException
("Odd number of ints found: " + enc.length);

 StringBuffer sb = new StringBuffer();
 byte outb[] = new byte[8];
 int tmp[] = new int[2];
 int counter = enc.length / 2;
 for (int i = 0; i < enc.length; i += 2)
 {
 outb[0] = (byte)(enc[i] >>> 24);
 outb[1] = (byte)(enc[i] >>> 16);
 outb[2] = (byte)(enc[i] >>> 8);
 outb[3] = (byte)(enc[i]);
 outb[4] = (byte)(enc[i+1] >>> 24);
 outb[5] = (byte)(enc[i+1] >>> 16);
 outb[6] = (byte)(enc[i+1] >>> 8);
 outb[7] = (byte)(enc[i+1]);

 sb.append(getHex(outb));
 }
 return sb.toString();
 }

 public String getHex(byte b[])
 {
 StringBuffer r = new StringBuffer();
 for (int i = 0; i < b.length; i++)
 {
 int c = ((b[i]) >>> 4) & 0xf;
 r.append(hex[c]);
 c = ((int)b[i] & 0xf);
 r.append(hex[c]);
 }

 56

return r.toString();
 }

 public String padPlaintext(String str, char pc)
 {
 StringBuffer sb = new StringBuffer(str);
 int padding = sb.length() % 8;
 for (int i = 0; i < padding; i++)
 sb.append(pc);
 return sb.toString();
 }

 public String padPlaintext(String str)
 {
 return padPlaintext(str, ' ');
 }

}

 57

Btea.html is a Java Script implementation of Block TEA. In this research it is

implemented using the corrected round function.

 Btea.html

<html>
 <head>
 <title>TEA</title>
 <meta http-equiv="content-type" content="text/html;
 charset=iso-8859-1">
 <style type="text/css"> <!-- p, td { font-family: Arial, sans-serif; }
 --> </style>
 <script type="text/javascript">

function callencode(val, key)
{
 var v = strToLongs(escape(val).replace(/%20/g,' '));
 var k = keyToLongs(key);
 var n = v.length;
 if (n == 0) return("");
 if (n == 1) v[n++]=0;
 var z = v[n-1], y = v[0], delta = 0x9E3779B9;
 var mx, e, q = Math.floor(6 + 52/n), sum = 0;
 while (q-- > 0) {
 sum += delta;
 e = sum>>>2 & 3;
 for (var p = 0; p < n-1; p++) {
 y = v[p+1];
 mx = (z>>>5 ^ y<<2) + (y>>>3 ^ z<<4) ^ (sum^y) + (k[p&3 ^ e] ^ z)
 z = v[p] += mx;
 }
 y = v[0];
 mx = (z>>>5 ^ y<<2) + (y>>>3 ^ z<<4) ^ (sum^y) + (k[p&3 ^ e] ^ z)
 z = v[n-1] += mx;
 }
 return(longsToStr(v));
}

 Btea.html

 58

function calldecode(val, key)
{
 var v = strToLongs(val);
 var k = keyToLongs(key);
 var n = v.length;
 if (n == 0) return("");
 var z = v[n-1], y = v[0], delta = 0x9E3779B9;
 var mx, e, q = Math.floor(6 + 52/n), sum = q*delta;
 while (sum != 0) {
 e = sum>>>2 & 3;
 for (var p = n-1; p > 0; p--) {
 z = v[p-1];
 mx = (z>>>5 ^ y<<2) + (y>>>3 ^ z<<4) ^ (sum^y) + (k[p&3 ^ e] ^ z)
 y = v[p] -= mx;
 }
 z = v[n-1];
 mx = (z>>>5 ^ y<<2) + (y>>>3 ^ z<<4) ^ (sum^y) + (k[p&3 ^ e] ^ z)
 y = v[0] -= mx;
 sum -= delta;
 }

 var s = longsToStr(v);
 if (s.indexOf("\x00") != -1) {
 s = s.substr(0, s.indexOf("\x00"));
 }
 return(unescape(s));
}

function strToLongs(s) {
 var l = new Array(Math.ceil(s.length/4))
 for (var i=0; i<l.length; i++) {
 l[i] = s.charCodeAt(i*4) + (s.charCodeAt(i*4+1)<<8) +
 (s.charCodeAt(i*4+2)<<16) + (s.charCodeAt(i*4+3)<<24);
 }
 return(l);
}

function keyToLongs(k) {
 var l = new Array(4)

 59

 for (var i=0; i<4; i++) {
 l[i] = k.charCodeAt(i*4) + (k.charCodeAt(i*4+1)<<8) +
 (k.charCodeAt(i*4+2)<<16) + (k.charCodeAt(i*4+3)<<24);
 }
 return(l);
}

function longsToStr(l) {
 var s = "";
 for (var i=0; i<l.length; i++) {
 s += String.fromCharCode(l[i] & 0xFF, l[i]>>>8 & 0xFF,
 l[i]>>>16 & 0xFF, l[i]>>>24 & 0xFF);
 }
 return(s);
}

 </script>
 </head>
 <body bgcolor="#00FFFF">
 <form name="f" action="none!">
 <body bgcolor="#00FFFF">
 <script type="text/javascript">
 document.write("<h1>Block Tiny Encryption Algorithm</h1>")
 var d = new Date()
 x=d.getMinutes()
 y=d.getSeconds()
 h=d.getHours()
 no=Math.random()*1000000000000*x*y*h
 document.write("You can use this sample generated random number as
 a key: ");
 document.write(Math.floor(no))
 </script>
<p> </p>
 <p>
 </p>
 <p>Possible Equivalent key pairs to prove the key space is 127 instead of
 128 (for Block TEA)

 Pair 1:

 00000000800000000000000000000000

 00000000800000008000000080000000

 60

 Pair 2:

 80000000000000000000000000000000

 80000000000000008000000080000000

___________________</p>

 </body>
 <table width="701" style="border-collapse: collapse" bordercolor=
"#111111" cellpadding="0" cellspacing="0" height="200"> <tr>
 <td width="697" height="35"><font size="4"
face="Batang"> </td>
 <td width="4" height="35"> </td> </tr> <tr>
 <td width="697" height="41">
Please type the Plain Text<input type="text" name="val"
size="100" ><p> </p> <p>
Please type the Key <input type="text" name="key" size="32" >
</p><p> </td> <td width="4" height="41"> </td>
/tr> <tr> <td width="697" height="54"><script type="text/javascript">var
ciferText;</script> <!-- use 'ciferText' because <input> field will truncate at
null chars --> <input type="button" value="The Cipher text is"
 onClick='f.encrypted.value = ciferText = callencode(f.val.value,
f.key.value)'> <input type="text" name="encrypted" size="100"></td>
 </tr><tr><td width="697" height="22"> <p> </td>
 </tr> <tr><td width="697" height="26">
 <input type="button" value="Decrypted Value of the cipher text is"
 onClick='f.decrypted.value = calldecode(ciferText,
f.key.value)'> <input type="text" name="decrypted" size="100">
</td> </tr> <tr> <td width="697" height="22"> </td>
 </tr> </table></form> </body><p>

<p>

 </p>
</html>

