
APPLICATION NOTE

REJ05B0468-0100Z/Rev.1.00 September 2004 Page 1 of 102

740 Family
Programming Guidelines <C Language>

Preface
This application note is written for the Renesas 740 family 8-bit single-chip microcomputers.
It explains the basics of C language programming and how to put your program into ROM using the
M3T–ICC740 C compiler.
For details about hardware and development support tools available for each type of microcomputer
in the740 family, please refer to the appropriate hardware manuals, user's manuals and instruction
manuals.

Guide to Using This Application Note
This application note provides programming guidelines for M3T-ICC74, the C compiler for the 740
family. Knowledge of 740 family microcomputer architectures and the assembly language is helpful
in using this manual. The manual contains the following:

• Those who learn the C language for the first time Begin with Chapter 1.
• Those who wish to know ICC740 extended functions Begin with Chapter 2.

This application note is described with the case of the large memory model (-ml option). Please refer
to ICC compiler programming guide (icc740_jp.pdf) about options.

Before using material, please visit our website to confirm
that this is the most current document available.

740 Family
Programming Guidelines <C Language>

REJ05B0468-0100Z /Rev.100 September 2004 Page 2 of 102

Table of Contents

Chapter 1 Introduction to C Language _____________________________ 4

1.1 Programming in C ··5
1.1.1 Assembly Language and C...5
1.1.2 Program Development Procedure ...6
1.1.3 Easily Understandable Program ...8

1.2 Data Types ···12
1.2.1 "Constants" in C Language ... 12
1.2.2 Variables .. 14
1.2.3 Data Characteristics ... 16

1.3 Operators ···18
1.3.1 Operators of ICC740 ... 18
1.3.2 Operators for Numeric Calculations .. 19
1.3.3 Operators for Processing Data ... 21
1.3.4 Operators for Examining Condition ... 23
1.3.5 Other Operators .. 24
1.3.6 Priorities of Operators ...26
1.3.7 Examples for Easily Mistaken Use of Operators ... 27

1.4 Control Statements ···29
1.4.1 Structuring of Program .. 29
1.4.2 Branching Processing Depending on Condition (Branch Processing) 30
1.4.3 Repetition of Same Processing (Repeat Processing) .. 34
1.4.4 Suspending Processing .. 37

1.5 Functions ··39
1.5.1 Functions and Subroutines ... 39
1.5.2 Creating Functions ... 40
1.5.3 Exchanging Data between Functions .. 42

1.6 Storage Classes ···43
1.6.1 Effective Range of Variables and Functions ... 43
1.6.2 Storage Classes of Variables .. 44
1.6.3 Storage Classes of Functions ... 46

1.7 Arrays and Pointers ··48
1.7.1 Arrays 48
1.7.2 Creating an Array ...49
1.7.3 Pointer 51
1.7.4 Using Pointers .. 53
1.7.5 Placing Pointers into an Array ... 55
1.7.6 Table Jump Using Function Pointer .. 57

1.8 Struct and Union ···58
1.8.1 Struct and Union ... 58
1.8.2 Creating New Data Types ... 59

1.9 Preprocess Commands ··63
1.9.1 Preprocess Commands of ICC740 ... 63
1.9.2 Including a File ... 64

740 Family
Programming Guidelines <C Language>

REJ05B0468-0100Z /Rev.100 September 2004 Page 3 of 102

1.9.3 Macro Definition .. 65
1.9.4 Conditional Compile .. 67

Chapter 2 Downloading a Program into the ROM ___________________ 69

2.1 Memory Allocation ··70
2.1.1 Types of Codes and Data ... 70
2.1.2 Segments Managed by the ICC740 .. 71
2.1.3 Controlling Memory Allocation .. 72

2.2 Initialization Setup Files ··75
2.2.1 Roles of the Initialization Setup Files .. 75
2.2.2 Startup Program ...76
2.2.3 Link Command File ... 79

2.3 Extended Functions for Putting into the ROM ··84
2.3.1 Variable Location .. 84
2.3.2 Handling of Bits .. 86
2.3.3 Control of the I/O Interface .. 88
2.3.4 Alternative Way when Unable to Write in C Language .. 89

2.4 Linkage with Assembly Language ··90
2.4.1 Interfacing between Functions .. 90
2.4.2 Calling Assembly Language from C Language ... 93

2.5 Interrupt Handling ···95
2.5.1 Example for Writing Interrupt Handling Functions ... 96
2.5.2 Writing Interrupt Handling Functions ... 97
2.5.3 Setting the Interrupt Disable Flag (I Flag) ... 98
2.5.4 Registering to the Interrupt Vector Area .. 99
2.5.5 Setting Up the Interrupt Vector Segment .. 100

APPLICATION NOTE

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 4 of 102

Chapter 1

Introduction to C Language

1.1 Programming in C Language

1.2 Data Types

1.3 Operators

1.4 Control Statements

1.5 Functions

1.6 Storage Classes

1.7 Arrays and Pointers

1.8 Struct and Union

1.9 Preprocess Commands

This chapter explains for those who learn the C language for the first
time the basics of the C language that are required when creating a
built-in program.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 5 of 102

1.1 Programming in C Language

1.1.1 Assembly Language and C Language
The following explains the main features of the C language and describes how to write a program in
"C".

Features of the C Language

(1) An easily traceable program can be written.

The basics of structured programming, i.e., "sequential processing", "branch processing", and
"repeat processing", can all be written in a control statement. For this reason, it is possible to
write a program whose flow of processing can easily be traced.

(2) A program can easily be divided into modules.
A program written in the C language consists of basic units called "functions". Since function
have their parameters highly independent of others, a program can easily be made into parts
and can easily be reused. Furthermore, modules written in the assembly language can be
incorporated into a C language program directly without modification.

(3) An easily maintainable program can be written.
For reasons (1) and (2) above, the program after being put into operation can easily be
maintained. Furthermore, since the C language is based on standard specifications (ANSI
standard (Note)), a program written in the C language can be ported into other types of
microcomputers after only a minor modification of the source program.

Note: This refers to standard specifications stipulated for the C language by the American

National Standards Institute (ANSI) to maintain the portability of C language programs.

Comparison between C and Assembly Languages

The folllowing outlines the differences between the C and assembly languages with respect
to the method for writing a source program.

 C language Assembly language

Basic unit of program
(Method of description)

Function (Function name () { }) Subroutine (Subroutine name:)

Format Free format 1 instruction/line
Discrimination

between uppercase
and lowercase

Uppercase and lowercase are
discriminated (Normally written
in lowercase)

Not discriminated

Allocation of data area Specified by "data type"
specified by a number of bytes

(using pseudo-instruction)

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 6 of 102

1.1.2 Program Development Procedure
The operation of translating a source program written in "C" into machine language is referred
to as "compiling". The software provided for performing this operation is called a "compiler".
This section explains the procedure for developing a program by using M3T-ICC740, the C
compiler for the 740 family of Renesas 8-bit single-chip microcomputers.

M3T-ICC740 Product List

The following lists the products included in M3T-ICC740, the C compiler for the Renesas
8-bit single-chip microcomputers 740 family.

M3T-ICC740
Product list

Converts C language source files into assembly
language source files.
Processes macro and conditional compiling

Compiler
(ICC740)

Sample startup program
(cstartup.s31)

Standard libraries

Assembler
(A740)

Linkage editor
(XLINK)

Librarian
(XLIB)

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 7 of 102

Creating Machine Language File from Source File

Creation of a machine language file requires the conversion of start-up programs written in
Assembly language and C language source files.
The following shows the tool chain necessary to create a machine language file from a C
language source file.

C language
source file

Libraries Relocatable
file

Assembler
A740

Absolute
 module file

Machine
language file

Linkage editor XLINK

Startup program
cstartup.s31 Conpiler ICC740

To ROM

Relocatable
file

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 8 of 102

1.1.3 Easily Understandable Program
Since there is no specific format for C language programs, they can be written in any desired way
only providing that some rules stipulated for the C language are followed. However, a program
must be easily readable and must be easy to maintain. Therefore, a program must be written in
such a way that everyone, not just the one who developed the program, can understand it.
This section explains some points to be noted when writing an "easily understandable" program.

Rules on C Language

The following lists the six items that need to be observed when writing a C language
program:
(1) As a rule, use lowercase English letters to write a program.
(2) Separate executable statements in a program with a semicolon ";".
(3) Enclose execution units of functions or control statements with brackets "{" and "}"
(4) Functions and variables require type declaration.
(5) Reserved words cannot be used in identifiers (e.g., function names and variable names).
(6) The comment is described with "/* comment */" or "//comment" (C++ form)."-K" option is

required in the case of C++ form.

Configuration of C Language Source File

The following schematically shows a configuration of a general C language source file. For
each item in this file, refer to the section indicated with an arrow.

Reading header file

Type declaration of functions used;

Macro definition

Declaration of external variables

Type function name (dummy argument, ...)

{

Declaration of internal variables;

Executable statement;

}

Refer to 1.9, "Preprocess Commands".

Refer to 1.5, "Functions".

Refer to 1.9, "Preprocess Commands".

Refer to 1.2, "Date Types" and 1.6,
"Storage Classes".

Refer to 1.5, "Functions".

Refer to 1.2, "Date Types" and 1.6,
"Storage Classes".
Refer to 1.3, "Operators" and 1.4,
"Control Statements".

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 9 of 102

Programming Style

To improve program maintainability, programming conversions should be agreed upon by
the programming team. Creating a template is a good way for the developers to establish a
common programming style that will facilitate program development, debug and
maintenance. The following shows an example of a programming style.

(1) Create separate functions for various tasks of a program.
(2) Keep functions relatively small (< 50 lines is recommended)
(3) Do not write multiple executable statements in one line
(4) Indent each processing block successively (normally 4 tab stops)
(5) Clarify the program flow by writing comment statements as appropriate
(6) When creating a program from multiple source files, place the common part of the

program in an independent separate file and share it

/* Test program */

unsigned int ram1;

main()

{

char a;

while(1){

 if(a == ram1){

 break;

 }

 else{

 a = ram1;

 }

}

}

'main' processing

'while' processing
Enclose a set of processing
with brackets "{" and "}"

Enclose a comment statement with "/*" and "*/".

Indentation

Indentation

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 10 of 102

Method for Writing Comments

Comments are an important aspect of a well written program. Program flow can be clarified, for
example, through a file and function headers.

/* ""FILE COMMENT"" **
* System Name : Test program
* File Name : TEST.C
* Version : 1.00
* Contents : Test program
* Customer :………………
* Model :………………
* Order :………………
* CPU : M38039MC-XXXFP
* Compiler : M3T-ICC740 (Ver.1.00)
* Programmer : XXXX
* Note :The module contained in this file is designed so that it can be reused.
**
* Copyright,XXXX xxxxxxxxxxxxxxxxx CORPORATION
**
* History :XXXX.XX.XX : Start
* ""FILE COMMENT END"" **/

/* ""Prototype declaration"" ***/
void main (void);
void key_in (void);
void key_out (void);

/* ""FUNC COMMENT"" **
* ID : 1.
* Module outline : Main function
* --
* Include : "system.h"
* --
* Declaration : void main (void)
* --
* Functionality : Overall controll
* --
* Argument : void
* --
* Return value : void
* --
* input : None
* Output : None
* --
* Used functions : void key_in (void) : Input function
* : void key_out (void) : Output function
* --
* Precaution : Nothing particular
* --
* History : XXXX.XX.XX : Start
/* ""FUNC COMMENT END"" **/
#include "system.h"
void main (void)
{
 while(1){ /* Endless loop */
 key_in(); /* Input processing */
 key_out(); /* Output processing */
 }
}

Example of file header

Example of function header

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 11 of 102

The words listed in the following are reserved for ICC740. Therefore, these words cannot be
used in variable or function names.

__asm * do int short unsigned
auto double interrupt signed void
bit else long sizeof volatile
break enum monitor static while
case extern no_init struct zpage *
char float npage * switch
const for register tiny_func
continue goto return typedef
default if sfr union

* When using "-e" option, this word is reserved for ICC740.

Column Reserved Words of ICC740

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 12 of 102

1.2 Data Types

1.2.1 "Constants" in C Language
Four types of constants can be handled in the C language: "integer", "real", "single character" and
"character string".
This section explains the method of description and the precautions to be noted when using each of
these constants.

Integer Constants

Integer constants can be written using one of three methods of numeric representation:
decimal, hexadecimal, and octal. The following shows each method for writing integer
constants. Constant data are not discriminated between uppercase and lowercase.

Numeration Method of writing Examples

Decimal Normal mathematical notation (nothing added) 127, +127, -56
Hexadecimal Numerals are preceded by 0x or 0X 0x3b, 0x3B

Octal Numerals are preceded by 0 (zero) 07, 041

Real Constants (Floating-point Constants)

Floating-point constants refer to signed real numbers that are expressed in decimal. These
numbers can be written by usual method of writing using the decimal point or by
exponential notation using "e" or "E".
• Usual method of writing Example: 175.5, -0.007
• Exponential notation Example: 1.755e2, -7.0E-3

Single-character Constants

Single-character constants must be enclosed with single quotations ('). In addition to
alphanumeric characters, control codes can be handled as single-character constants.
Inside the microcomputer, all of these constants are handled as ASCII code, as shown below.

Memory

0x01
Integer

1
Integer

constant

Memory

0x31
ASCII code

'1'
Single-character
constant

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 13 of 102

Character String Constants

A row of alphanumeric characters or control codes enclosed with double quotations (") can be
handled as a character string constant. Character string constants have the null character
"\0" automatically added at the end of data to denote the end of the character string.

Example: "abc", "012\n", "Hello!"

The following shows control codes (escape sequence) that are frequently used in the C
language.

Notation Contents

\f Form feed (FF)
\n New line (NL)
\r Carriage return (CR)
\t Horizontal tab (HT)
\\ \symbol
\' Single quotation
\" Double quotation
\x constant value Hexadecimal
\ constant value Octal
\0 Null code

Memory

'a' {'a' , 'b'}
A set of single-
character constants

'b'

2 bytes of
data area are
used

Memory

'a' "ab"
Character string
constant

'b'

'\0'

3 bytes of
data area are
used

Null code

Column List of Control Codes (Escape Sequence)

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 14 of 102

1.2.2 Variables
Before a variable can be used in a C language program, its "data type" must first be declared in the
program. The data type of a variable is determined based on the memory size allocated for the
variable and the range of values handled.
This section explains the data types of variables that can be handled by ICC740 and how to declare
the data types.

Basic Data Types of ICC740

The following lists the data types that can be handled in ICC740. Descriptions enclosed with
() in the table below can be omitted when declaring the data type.

 Data type Bit length Range of values that can be expressed

char 0 to 255
unsigned char 0 to 255
signed char

8 bits
-128 to 127

unsigned short (int) 0 to 65535
(signed) short (int)

16 bits
-32768 to 32767

unsigned int 0 to 65535
(signed) int

16 bits
-32768 to 32767

unsigned long (int) 0 to 4294967295

integer

(signed) long (int)
32 bits

-2147483648 to 2147483647
float 32 bits Number of significant digits: 9
double 32 bits Number of significant digits: 9 Real
long double 32 bits Number of significant digits: 9

* When using "-c" option, the data range which can be expressed is –128 to 127 since a char
type is equivalent to a signed char type.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 15 of 102

Declaration of Variables

Variables are declared using a format that consists of a "data type variable name;".
Example: To declare a variable a as char type

char a;
By writing "data type variable name = initial value;", a variable can have its initial value set
simultaneously when it is declared.

Example: To set 'A' to variable a of char type as its initial value
char a = 'A';

Furthermore, by separating an enumeration of multiple variables with a comma (,),
variables of the same type can be declared simultaneously.

Example: int i, j;
Example: int i = 1, j = 2;

8 bits

XX

'A'

XX

a

b

i

XX: Indeterminate

k

n

8 bits

500

0x10000L

void main(void)

{

char a;

char b = 'A';

int i;

unsigned int k=500;

long n = 0x10000L;

Denotes that this is the
long type of data.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 16 of 102

1.2.3 Data Characteristics
When declaring a variable or constant, ICC740 allows its data characteristic to be written along
with the data type. The specifier used for this purpose is called the "type qualifier".
This section explains the data characteristics handled by ICC740 and how to specify a data
characteristic.

Specifying that the Variable or Constant is Singed or Unsigned Data (singed/
unsigned Qualifier)

Write the type qualifier "signed" when the variable or constant to be declared is signed data
or "unsigned" when it is unsigned data. If neither of these type specifiers is written when
declaring a variable or constant, ICC740 assumes that it is signed data for only the data
type char, or unsigned data for all other data types.

* When using "-c" option, a char type is equivalent to a signed char type

Specifying that the Variable or Constant is Constant Data (const Qualifier)

Write the type qualifier "const" when the variable or constant to be declared is the data
whose value does not change at all even when the program is executed. If a description is
found in the program that causes this constant data to change, ICC740 outputs an error.

void main(void)

{

char a;

signed char s_a;

int b;

unsigned int u_b;

}

Synonymous with "unsigned char a;"

Synonymous with "signed int b;"

void main(void)

{

char a = 10;

const signed char c_a=20;

a = 5;

c_a = 5;

}

Error is generated

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 17 of 102

Inhibiting Optimization by Compiler (volatile Qualifier)

ICC740 optimizes the instructions that do not have any effect in program processing, thus
preventing unnecessary instruction code from being generated. However, there are some
data that are changed by an interrupt or input from a port irrespective of program
processing. Write the type qualifier "volatile" when declaring such data. ICC740 does not
optimize the data that is accompanied by this type qualifier and outputs instruction code for
it.

When declaring data, write data characteristics using various specifiers or qualifiers along
with the data type. The following shows the syntax of a declaration.

Declaration specifier

Storage class specifier
(described later)

Type qualifier Type specifier
Declarator

(data name)

static
register

auto
extern

unsigned
signed
const

volatile

int
char
float

struct
union

data name

char port1;
volatile char port2;

void func(void)
{
 port1 = 0;
 port2 = 0;
 if(port1 == 0){

 }
 if(port2 == 0){

 }
}

Because the qualifier "volatile" is nonexistent in the
data declaration, comparison is removed by optimization
and no code is output for this.

Because the qualifier "volatile" is specified in the data
declaration, no optimization is performed and code is
output for this.

Column Syntax of Declaration

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 18 of 102

1.3 Operators

1.3.1 Operators of ICC740
ICC740 has various operators available for writing a program.
This section describes how to use these operators for each specific purpose of use (not including
address and pointer operators) and the precautions to be noted when using them.

ICC740 Operators

The following lists the operators that can be used in ICC740.

Monadic arithmetic operators ++ -- + -

Binary arithmetic operators + -* / %

Shift operators << >>

Bitwise operators & | ^ ~

Relation operators > < >= <= == !=

Logical operators && || !

Assignment operators = += -= *= /= %= <<= >>= &= |= ^=

Conditional operators ?:

sizeof operators sizeof

Cast operators (type)

Address operators &

Pointer operators *

Comma operators ,

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 19 of 102

1.3.2 Operators for Numeric Calculations
The primary operators used for numeric calculations consist of the "arithmetic operators" to
perform calculations and the "assignment operators" to store the results in memory.
This section explains these arithmetic and assignment operators.

Monadic Arithmetic Operators

Monadic arithmetic operators return one answer for one variable.

Operator Description format Content

++
++ variable (prefix type)
variable ++ (postfix type)

Increments the value of an expression.

--
-- variable (prefix type)
variable -- (postfix type)

Decrements the value of an expression.

+ + expression Returns the value of an expression.

- - expression
Returns the value of an expression after
inverting its sign.

When using the increment operator (++) or decrement operator (--) in combination with an
assignment or relational operator, note that the result of operation may vary depending on
which type, prefix or postfix, is used when writing the operator.
<Examples>
Prefix type: The value is increment or decrement before assignment.

b = ++a; → a = a + 1; b = a;
Postfix type: The value is increment or decrement after assignment.

b = a++; → b = a; a = a + 1;

Binary Arithmetic Operators

In addition to ordinary arithmetic operations, these operators make it possible to obtain the
remainder of an "integer divided by integer" operation.

Operator Description format Content

+ Expression 1 + expression 2
Returns the sum of expression 1 and expression 2
after adding their values

- Expression 1 - expression 2
Returns the difference between expression 1 and
 expression 2 after subtracting their values

* Expression 1 * expression 2
Returns the product of expression 1 and expression 2
after multiplying their values

/ Expression 1 / expression 2
Returns the quotient of expression 1 after dividing its value
by that of expression 2

% Expression 1 % expression 2
Returns the remainder of expression 1 after dividing its
value by that of expression 2

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 20 of 102

Assignment Operators

The operation of "expression 1 = expression 2" assigns the value of expression 2 for
expression 1. The assignment operator '=' can be used in combination with arithmetic
operators described above or bitwise or shift operators that will be described later. (This is
called a compound assignment operator.) In this case, the assignment operator '=' must
always be written on the right side of the equation.

Operator Description format Content

= expression 1 = expression 2 Substitutes the value of expression 2 for expression 1.

+= expression 1 += expression 2
Adds the values of expressions 1 and 2, and
substitutes the sum for expression 1.

-= expression 1 -= expression 2
Subtracts the value of expression 2 from that of expression 1,
and substitutes the difference for expression 1.

*= expression 1 *= expression 2
Multiplies the values of expressions 1 and 2, and
substitutes the product for expression 1.

/= expression 1 /= expression 2
Divides the value of expression 1 by that of expression 2,
and substitutes the quotient for expression 1.

%= expression 1 %= expression 2
Divides the value of expression 1 by that of expression 2,
and substitutes the remainder for expression 1.

<<= expression 1 <<= expression 2
Shifts the value of expression 1 left by the amount equal to
the value of expression 2, and substitutes the result for
expression 1.

>>= expression 1 >>= expression 2
Shifts the value of expression 1 right by the amount equal to
the value of expression 2, and substitutes the result for
expression 1.

&= expression 1 &= expression 2
ANDs the bits representing the values of expressions 1 and
2, and substitutes the result for expression 1.

|= expression 1 |= expression 2
ORs the bits representing the values of expressions 1 and 2,
and substitutes the result for expression 1.

^= expression 1 ^= expression 2
XORs the bits representing the values of expressions 1 and
2, and substitutes the result for expression 1.

When performing arithmetic or logic operation on different types of data, ICC740 converts
the data types following the rules shown below. This is called "implicit type conversion".
• Data types are adjusted to the data type whose bit length is greater than the other before

performing operation.
• When substituting, data types are adjusted to the data type located on the left side of the

equation.

Column Implicit Type Conversion

When …

char byte = 0x12;
int word = 0x3456;

0x00 is extended

word = byte;
 /* int ← char */

0x 12

0x 56 0x 00 12

0x 34 56

Upper 1 bytes is cut

byte = word;
 /* char ← int */

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 21 of 102

1.3.3 Operators for Processing Data
The operators frequently used to process data are "bitwise operators" and "shift operators".
This section explains these bitwise and shift operators.

Bitwise Operators

Use of bitwise operators makes it possible to mask data and perform active conversion.

Operator Description format Content

& expression 1 & expression 2
Returns the logical product of the values of expressions 1
and 2 after ANDing each bit.

| expression 1 | expression 2
Returns the logical sum of the values of expressions 1 and
2 after ORing each bit.

^ expression 1 ^ expression 2
Returns the exclusive logical sum of the values of
expressions 1 and 2 after XORing each bit.

~ ~expression Returns the value of the expression after inverting its bits.

Shift Operators

In addition to shift operation, shift operators can be used in simple multiply and divide
operations. (For details, refer to "Column Multiply and divide operations using shift
operators".)

Operator Description format Content

<< expression 1 << expression 2
Shifts the value of expression 1 left by the amount equal to
the value of expression 2, and returns the result.

>> expression 1 >> expression 2
Shifts the value of expression 1 right by the amount equal
to the value of expression 2, and returns the result.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 22 of 102

Comparison between Arithmetic and Logical Shifts

When executing "shift right", note that the shift operation varies depending on whether the
data to be operated on is singed or unsigned.
• When unsigned → Logical shift: A logic 0 is inserted into the most significant bit.
• When signed → Arithmetic shift: Shift operation is performed so as to retain the sign.

Namely, if the data is a positive number, a logic 0 is inserted into the
most significant bit; if a negative number, a logic 1 is inserted into the
most significant bit.

 <Unsigned> <Negative number> <Positive number>

unsigned int i = 0xFC18
(i= 64520)

signed int i = 0xFC18
(i= -1000)

 signed int i = 0x03E8
(i= +1000)

 1111 1100 0001 1000 1111 1100 0001 1000 0000 0011 1110 1000

i >> 1 0111 1110 0000 1100 1111 1110 0000 1100 (-500) 0000 0001 1111 0100 (+500)

i >> 2 0011 1111 0000 0110 1111 1111 0000 0110 (-250) 0000 0000 1111 1010 (+250)

i >> 3 0001 1111 1000 0011 1111 1111 1000 0011 (-125) 0000 0000 0111 1101 (+125)

 Logical shift
Arithmetic shift

(positive or negative sign is retained)

Shift operators can be used to perform simple multiply and divide operations. In this case,
operations are performed faster than when using ordinary multiply or divide operators.
Considering this advantage, ICC740 generates shift instructions, instead of multiply
instructions, for such operations as "*2", "*4", and "*8".

• Multiplication: Shift operation is performed in combination with add operation.

a*2 → a<<1
a*4 → a<<2
a*8 → a<<3

• Division: The data pushed out of the least significant bit makes it possible to know

the remainder.
a/4 → a>>2
a/8 → a>>3
a/16 → a>>4

Column Multiply and Divide Operations Using Shift Operators

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 23 of 102

1.3.4 Operators for Examining Condition
Used to examine a condition in a control statement are "relational operators" and "logical operators".
Either operator returns a logic 1 when a condition is met and a logic 0 when a
condition is not met.
This section explains these relational and logical operators.

Relational operators

These operators examine two expressions to see which is larger or smaller than the other.
If the result is true, they return a logic 1; if false, they return a logic 0.

Operator Description format Content

< expression 1 < expression 2
True if the value of expression 1 is smaller than that of
expression 2; otherwise, false.

<= expression 1 <= expression 2
True if the value of expression 1 is smaller than or
equal to that of expression 2; otherwise, false.

> expression 1 > expression 2
True if the value of expression 1 is larger than that of
expression 2; otherwise, false.

>= expression 1 >= expression 2
True if the value of expression 1 is larger than or
equal to that of expression 2; otherwise, false.

== expression 1 == expression 2
True if the value of expression 1 is equal to that of
expression 2; otherwise, false.

|= expression 1 |= expression 2
True if the value of expression 1 is not equal to that of
expression 2; otherwise, false.

Logical operators

These operators are used along with relational operators to examine the combinatorial
condition of multiple condition expressions.

Operator Description format Content

&& expression 1 && expression 2
True if both expressions 1 and 2 are true;
otherwise, false.

|| expression 1 || expression 2
False if both expressions 1 and 2 are false;
otherwise, true.

! !expression 2
False if the expression is true, or true if the expression is
false.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 24 of 102

1.3.5 Other Operators
This section explains four types of operators which are unique in the C language.

Conditional Operator

This operator executes expression 1 if a condition expression is true or expression 2 if the
condition expression is false. If this operator is used when the condition expression and
expressions 1 and 2 both are short in processing description, coding of conditional branches
can be simplified. The following lists this conditional operator and an example for using this
operator.

Operator Description format Content

? : Condition expression ? expression 1 : expression 2
Executes expression 1 if the condition
expression is true or expression 2
if the condition expression is false.

sizeof Operator

Use this operator when it is necessary to know the number of memory bytes used by a given
data type or expression.

Operator Description format Content

sizeof()
sizeof expression
sizeof (data type)

Returns the amount of memory used by the expression
or data type in units of bytes.

c = a > b ? a : b ;

• Value whichever larger is selected.

c = a > 0 ? a : -a ;

• Absolute value is found.

if(a > b){
 c = a ;
}
else{
 c = b ;
}

=

if(a > 0){
 c = a ;
}
else{
 c = -a ;
}

=

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 25 of 102

Cast Operator

When operation is performed on data whose types differ from each other, the data used in
that operation are implicitly converted into the data type that is largest in the expression.
However, since this could cause an unexpected fault, a cast operator is used to perform type
conversions explicitly.

Operator Description format Content

() (new data type) variable
Converts the data type of the variable to the new data
type.

Address Operator

The address value of memory area in which variables are assigned is returned. Variable
parts can be an array element. In that case, the address of the position which an element
number shows will become its value.

Operator Description format Content

& & variable Returns the address of variable.

Pointer Operator

The contents of the memory area specified by the pointer variable are indicated.

Operator Description format Content

* * variable The contents of the memory area specified by the
pointer variable are indicated.

Comma (Sequencing) Operator

This operator executes expression 1 and expression 2 sequentially from left to right. This
operator, therefore, is used when enumerating processing of short descriptions.

Operator Description format Content

, expression 1, expression 2
Executes expression 1 and expression 2 sequentially from
left to right.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 26 of 102

1.3.6 Priorities of Operators
The operators used in the C language are subject to "priority resolution" and "rules of combination"
as are the operators used in mathematics.
This section explains priorities of the operators and the rules of combination they must follow:

Priority Resolution and Rules of Combination

When multiple operators are included in one expression, operation is always performed in
order of operator priorities beginning with the highest priority operator. When multiple
operators of the same priority exist, the rules of combination specify which operator, left or
right, be executed first.

Priority

resolution
Type of operator Operator

Rules of
combination

High Expression () [] -> . (Note1) →
 Monadic arithmetic

operators, etc.
! ~ ++ -- + - * (Note 2) & (Note 3) (type) sizeof ←

 Multiply/divide operators * (Note 4) / % →
 Add/subtract operators + - →
 Shift operator << >> →

Relational operator
(comparison)

< <= > >= →

Relational operator
(equivalent)

== != →

 Bitwise operator (AND) & →
 Bitwise operator (EOR) ^ →
 Bitwise operator (OR) | →
 Logical operator (AND) && →
 Logical operator (OR) || →
 Conditional operator ?: ←
 Assignment operator = += -= *= /= %= &= ^= |= <<= >>= ←

Low Comma operator , →
Note 1: The dot '•' denotes a member operator that specifies struct and union members.
Note 2: The asterisk '*' denotes a pointer operator that indicates a pointer variable.
Note 3: The ampersand '&' denotes an address operator that indicates the address of a variable.
Note 4: The asterisk '*' denotes a multiply operator that indicates multiplication.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 27 of 102

1.3.7 Examples for Easily Mistaken Use of Operators
The program may not operate as expected if the "implicit conversion" or "precedence" of operators
are incorrectly interpreted.
This section shows examples for easily mistaken use of operators and how to correct.

Incorrectly Interpreted "Implicit Conversion" and How to Correct

When an operation is performed between different types of data in ICC740, the data types
are adjusted to that of data which is long in bit length by what is called "implicit conversion"
before performing the operation. To ensure that the program will operate as expected, write
explicit type conversion using the cast operator.

unsigned char a,b;
a = 0;
b = 5;
if((a – 1) >= b){

}
else{

}

The expected operation is such that the operation result 0xff of
expression (a - 1) in the if statement is compared with the value of
variable b, which should hold true, but actually is found to be false.

The constant is handled as signed quantity (signed int). For this reason,
the expression (a - 1) becomes an expression unsigned char - signed int.
By "implicit conversion," unsigned char has its type changed to signed int,
so the expression (a - 1) is calculated as (signed int - signed int).
The comparison of the operation result of expression (a - 1) with the
variable b also is performed in the form of (signed int >= signed int) as a
result of "implicit conversion." All told, comparison is performed on (0x00ff
>= 5), so the result is found to be false.

unsigned char a,b;
a = 0;
b = 5;
if((unsigned char)(a – 1) >= b){

}
else{

}

Use the cast operator for the entire calculation result of expression
(a - 1) to explicitly convert its type to unsigned char. In this way, its
data type can be matched to that of variable b.

Therefore

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 28 of 102

Incorrectly Interpreted "Precedence" of Operators and How to Correct

When one expression includes multiple operators, the "precedence" and "associativity" of
operators need to be interpreted correctly. Also, to ensure that the program will operate as
expected, use expressional "()."

int a = 5;
if(a & 0x10 == 0){

}
else{

}

Because between bitwise operator "&" and relational operator "==",
precedence is higher for the relational operator "==" and, hence, the
comparison result of 0x10==0 (false: 0) and the variable a are
AND'd, so the operation of the if statement conditional expression
always results in false.

Therefore

int a = 5;
if((a & 0x10) == 0){

}
else{

}

To ensure that the operation of a & 0x10
has precedence, add expressional "()."

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 29 of 102

1.4 Control Statements

1.4.1 Structuring of Program
The C language allows "sequential processing", "branch processing" and "repeat processing"-- the
basics of structured programming--to be written using control statements. Consequently, all
programs written in the C language are structured. This is why the processing flow in C language
programs are easy to understand.
This section describes how to write these control statements and shows some examples of usage.

Structuring of Program

The most important point in making a program easy to understand is to create a readable
program flow. This requires preventing the program flow from being directed freely as one
wishes. Therefore, processing flow is limited to the three primary forms: "sequential
processing", "branch processing" and "repeat processing". The result is the technique known
as "structured programming".
The following shows the three basic forms of structured programming.

Sequential
processing

 Executed top down, from top to bottom.

Branch
processing

 Branched to processing A or processing
B depending on whether condition P is
true or false.

Repeat
processing

 Processing A is repeated as long as
condition P is met.

Processing A

Processing B

Processing A

Processing B

False

True

Condition P

Processing A

False

True

Condition P

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 30 of 102

1.4.2 Branching Processing Depending on Condition (Branch Processing)
Control statements used to write branch processing include "if-else", "else-if", and "switch-case"
statements.
This section explains how to write these control statements and shows some examples of usage.

if-else Statement

This statement executes the next block if the given condition is true or the "else" block if the
condition is false. Specification of an "else" block can be omitted.

Count Up (if-else Statement)

In this example, the program counts up a seconds counter "second" and a minutes counter
"minute". When this program module is called up every 1 second, it functions as a clock.

Execution
statement A

Is condition
expression true?

False

True

if(Condition expression){

Execution statement A

}

else{

Execution statement B

}

• If the else statement is omitted

False

True if(Condition expression){

Execution statement A

}
Execution

statement B

Is condition
expression true?

Execution
statement A

void count_up(void);
unsigned int second = 0;
unsigned int minute = 0;

void count_up(void)
{
 if(second >= 59){
 second = 0;
 minute ++;
 }
 else{
 second ++;
 }
}

Declares "count_up" function. (Refer to Section 1.5, "Functions".)
Declares variables for "second" (seconds counter)
and "minute" (minutes counter).

Defines "count_up" function.

If greater than 59 seconds,
the module resets "second"
and counts up "minute".

If less than 59 seconds,
the module counts up "second".

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 31 of 102

else-if Statement

Use this statement when it is necessary to divide program flow into three or more flows of
processing depending on multiple conditions. Write the processing that must be executed
when each condition is true in the immediately following block. Write the processing that
must be executed when none of conditions holds true in the last "else" block.

Switchover of Arithmetic Operations (else-if Statement)

In this example, the program switches over the operation to be executed depending on the
content of the input data "sw".

if(condition expression 1) {

Execution statement A

}

else if(condition expression 2) {

Execution statement A

}

else if(condition expression 3) {

Execution statement A

}

else{

Execution statement A

}

Execution
statement A

Execution
statement B

True

False

Execution
statement C

True

False

True

False

Execution
statement D

Is condition
expression 1

true?

Is condition
expression 2

true?

Is condition
expression 3

true?

Declares "select" function.
(Refer to Section 1.5, "Functions".)
Declares the variables used.

Defines "select" function.

If the content of "sw" is 0,

the program adds data.

If the content of "sw" is 1,

the program subtracts data.

If the content of "sw" is 2,

the program multiplies data.

If the content of "sw" is 3,

the program devides data.

If the content of "sw" is 4 or greater,

the program performs error processing.

void select(void);

int a = 29, b = 40;
long int ans;
char sw;

void select(void)
{
 if(sw == 0){
 ans = a + b;
 }
 else if(sw == 1){
 ans = a – b;
 }
 else if(sw == 2){
 ans = a * b;
 }

else if(sw == 3){
 ans = a / b;
 }
 else{
 error();
 }
}

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 32 of 102

switch-case Statement

This statement causes program flow to branch to one of multiple processing depending on
the result of a given expression. Since the result of an expression is handled as a constant
when making decision, no relational operators, etc. can be used in this statement.

Switchover of Arithmetic Operations (switch-case Statement)

In this example, the program switches over the operation to be executed depending on the
content of the input data "sw".

switch(expression) {

case constant 1: execution statement A
break;

case constant 2: execution statement B

break;

case constant 3: execution statement C
break;

default: execution statement D

break;

}

Execution
statement A

Execution
statement B

Constant 1

Execution
statement C

Execution
statement D

Constant 2 Constant 3 Others

Determination
of expression

Declares "select" function.
(Refer to Section 1.5, "Functions".)
Declares the variables used.

Defines "select" function.

Deterrmines the content of "sw".

If the content of "sw" is 0, the program adds data.

If the content of "sw" is 1, the program subtracts data.

If the content of "sw" is 2, the program multiplies data.

If the content of "sw" is 3, the program divides data.

If the content of "sw" is 4 or greater,
the program performs error processing.

void select(void);

int a = 29, b = 40;
long int ans;
char sw;

void select(void)
{
 switch(sw){

 case 0 : ans = a + b;
 break;
 case 1 : ans = a - b;
 break;

case 2 : ans = a * b;
 break;
 case 3 : ans = a / b;
 break;
 default: error();
 break;

}
}

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 33 of 102

A switch-case statement normally has a break statement entered at the end of each of its
execution statements.
If a block that is not accompanied by a break statement is encountered, the program
executes the next block after terminating that block. In this way, blocks are executed
sequentially from above. Therefore, this allows the start position of processing to be changed
depending on the value of an expression.

Column switch-case Statement without Break

switch(expression) {

case constant 1: Execution statement A

case constant 2: Execution statement B

case constant 3: Execution statement C

default: Execution statement D

}

Execution
statement A

Execution
statement B

Execution
statement C

Execution
statement D

Constant 1
Constant 2 Others

Determination
of expression

Constant 3

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 34 of 102

1.4.3 Repetition of Same Processing (Repeat Processing)
Control statements used to write repeat processing include "while", "for" and "do-while" statements.
This section explains how to write these control statements and shows some examples of usage.

while Statement

This statement executes processing in a block repeatedly as long as the given condition
expression is met. An endless loop can be implemented by writing a constant other than 0 in
the condition expression, because the condition expression in this case is always "true".

Finding Sum Total –1– (while Statement)

In this example, the program finds the sum of integers from 1 to 100.

Declares "sum" function.
 (Refer to Section 1.5, "Functions".)
Declares the variables used.

Defines "sum" function.

Defines and initializes counter variables.

Loops until the counter content reaches 100.

Changes the counter content.

void sum(void);

unsigned int total = 0;

void sum(void)
{
 unsigned int i = 1;

 while(i <= 100){

total += i;
i++;

 }
}

Execution
statement A

False

True

while(condition expression) {

Execution statement A

}

Is condition
expression

true?

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 35 of 102

for Statement

The repeat processing that is performed by using a counter always requires operations to
"initialize" and "change" the counter content, in addition to determining the given condition.
A for statement makes it possible to write these operations along with a condition
expression. Initialization (expression 1), condition expression (expression 2), and processing
(expression 3) each can be omitted. However, when any of these expressions is omitted,
make sure the semicolons (;) placed between expressions are left in. This for statement and
the while statement described above can always be rewritten.

Finding Sum Total –2– (for Statement)

In this example, the program finds the sum of integers from 1 to 100.

Declares "sum" function.
(Refer to Section 1.5, "Functions".)
Declares the variables used.

Defines "sum" function.

Defines counter variables.

Loops until the counter content increments from 1 to 100.

void sum(void);

unsigned int total = 0;

void sum(void)
{
 unsigned int i = 1;

 for(i = 1; i <= 100; i++){
 total += i;
 }
}

Execution
statement

False

True

for (expression 1; expression 2; expression 3) {

Execution statement

}

Expression 3

Expression 1

Is expression 2
true?

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 36 of 102

do-while Statement

Unlike the for and while statements, this statement determines whether a condition is true
or false after executing processing (post-execution determination). Although there could
be some processing in the for or while statements that is never once executed, all
processing in a do-while statement is executed at least once.

Finding Sum Total –3– (do-while Statement)

In this example, the program finds the sum of integers from 1 to 100.

Declares "sum" function.
(Refer to Section 1.5, "Functions".)
Declares the variables used.

Defines "sum" function.

Defines and initializes counter variables.

Loops until the counter content increments from 1 to 100.

void sum(void);

unsigned int total = 0;

void sum(void)
{
 unsigned int i = 1;

 do{
 i ++;
 total += i;
 }while(i < 100);
}

Expression
statement A

False

True

do{

expression statement

} while(condition expression); Is condition
expression

true?

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 37 of 102

1.4.4 Suspending Processing
There are control statements (auxiliary control statements) such as break, continue, and goto
statements that make it possible to suspend processing and quit.
This section explains how to write these control statements and shows some examples of usage.

break Statement

Use this statement in repeat processing or in a switch-case statement. When "break;" is
executed, the program suspends processing and exits only one block.

continue Statement

Use this statement in repeat processing. When "continue;" is executed, the program
suspends processing. After being suspended, the program returns to condition
determination when continue is used in a while statement or executes expression 3 before
returning to condition determination when used in a for statement.

Execution statement
- - - -
- - - -

 break;
- - - -

False

True

• When used in a while statement • When used in a for statement

Expression 1
while (condition expression) {

- - - - -
- - - - -
break;
- - - - -

}
for (expression 1;
expression 2; expression 3) {

- - - - -
break;
- - - - -

}

Is condition
expression

true? False

Execution statement
- - - -

 break;
- - - -

Is expression 2
true?

True

Expression 3

Execution statement
- - - -
- - - -

 continue;
- - - -

False

True

• When used in a while statement • When used in a for statement

Expression 1
while (condition expression) {

- - - - -
- - - - -

continue;
- - - - -

}
for (expression 1;
expression 2; expression 3) {

- - - - -
continue;

- - - - -
}

Is condition
expression

true? False

Execution statement
- - - -

 continue;
- - - -

Is expression 2
true?

True

Expression 3

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 38 of 102

goto Statement

When a goto statement is executed, the program unconditionally branches to the label
written after the goto statement. Unlike break and continue statements, this statement
makes it possible to exit multiple blocks collectively and branch to any desired location in
the function. However, since this operation is contrary to structured programming, it is
recommended that a goto statement be used in only exceptional cases as in error processing.
Note also that the label indicating a jump address must always be followed by an execution
statement. If no operation need to be performed, write a dummy statement (only a semicolon
';') after the label.

void main(void)
{
 while(1){
 - - - -
 while (…){
 if(…){
 goto err;
 }
 }
 }
 err: ;
}

Entering a label
label: execution statement;

If no operation need to be performed,
label: ; (dummy statement)

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 39 of 102

1.5 Functions

1.5.1 Functions and Subroutines
As subroutines are the basic units of program in the assembly language, so are the "functions" in
the C language.
This section explains how to write functions in ICC740.

Arguments and Return Values

Data exchanges between functions are accomplished by using "arguments", equivalent to
input variables in a subroutine, and "return values", equivalent to output variables in a
subroutine.
In the assembly language, no restrictions are imposed on the number of input or output
variables. In the C language, however, there is a rule that one return value per function is
accepted, and a "return statement" is used to return the value.
About the argument, the size of the argument is decided up to a total of 256 bytes per one
function, and when the size is over 256 bytes, the compiler generates an error.

SUB:

SUB_END:
 RTS

Input variable 1
Input variable 2

Main routine

Subroutine

• "Subroutine" in assembly language

JSR SUB

func(…)
{

return return value
}

Main function (calling function)

Function (called function)

• "Function" in C language

func(…);

Return value
(One value per

function)

Output variable 1
Output variable 2

Argument 1
Argument 2

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 40 of 102

1.5.2 Creating Functions
Three procedures are required before a function can be used. These are "function declaration"
(prototype declaration), "function definition", and "function call".
This section explains how to write these procedures.

Function Declaration (Prototype Declaration)

Before a function can be used in the C language, function declaration (prototype declaration)
must be entered first. The type of function refers to the data types of the arguments and the
returned value of a function.
The following shows the format of function declaration (prototype declaration):

data type of returned value function name (list of data types of arguments);

If there is no returned value and argument, write the type called "void" that means null.

Function Definition

In the function proper, define the data types and the names of "dummy arguments" that are
required for receiving arguments. Use the "return statement'' to return the value for the
argument.
The following shows the format of function definition:

data type of return value function name (data type of dummy argument 1 dummy argument 1, .…)
{

return return value;
}

Function Call

When calling a function, write the argument for that function. Use a assignment operator to
receive a return value from the called function.

function name (argument 1, ...);

When there is a return value

variable = function name (argument 1, ...);

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 41 of 102

Example for a Function

In this example, we will write three functions that are interrelated as shown below.

/* Prototype declaration */
void main(void);
int func1(int);
void func2(int, char);

/* Main function */
void main()
{

int a = 40,b = 29;
int ans;
char c = 0xFF;

ans = func1(a);
func2(b, c);

}

/* Definition function 1 */
int func1(int x)
{
 int z;

z = x + 1;
return z;

}
/* Definition function 2 */
void func2(int y, char m)
{
 :
}

Calls function 1 ("func1") using a as argument.
Return value is substituted for "ans".

Calls function 2 ("func2") using b, c as arguments.
There is no return value.

Returns a value for the argument
using a "return statement".

Main function
main

No return value
No argument

char type

int type

Function 2
func 2

Function 1
func 1

No return value

int type

int type

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 42 of 102

1.5.3 Exchanging Data between Functions
In the C language, exchanges of arguments and return values between functions are accomplished
by copying the value of each variable as it is passed to the receiver ("Call by Value"). Consequently,
the name of the argument used when calling a function and the name of the argument (dummy
argument) received by the called function do not need to coincide.
Since processing in the called function is performed using copied dummy arguments, there is no
possibility of damaging the argument proper in the calling function.
For these reasons, functions in the C language are independent of each other, making it possible to
reuse the functions easily.
This section explains how data are exchanged between functions.

Finding Sum of Integers (Example for a Function)

In this example, using two arbitrary integers in the range of -32,768 to 32,767 as arguments,
we will create a function "add" to find a sum of those integers and call it from the main
function.

/* Prototype declaration */
void main(void);
long add(int, int);

/* Main function */
void main()
{

long int answer;
int a = 29, b = 40;

answer = add(a, b);

}

/* Add function */
long add(int x, int y)
{
 long int z;

 z = (long int)x + y;
 return z;
}

(1) Calls the add function.

(2) Executes addition.

(3) Returns a value
for the argument.

<Flow of data>

Main function

Add function

a 29 b 40 answer

x dummy
argument

 + y z

(1) copy

(2)

(3) copy

dummy
argument

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 43 of 102

1.6 Storage Classes

1.6.1 Effective Range of Variables and Functions

Variables and functions have different effective ranges depending on their nature, e.g., whether
they are used in the entire program or in only one function. These effective ranges of variables and
functions are called "storage classes (or scope)".
This section explains the types of storage classes of variables and functions and how to specify
them.

Effective Range of Variables and Functions

A C language program consists of multiple source files. Furthermore, each of these source
files consists of multiple functions. Therefore, a C language program is hierarchically
structured as shown below.

There are following three storage classes for a variable:

(1) Effective in only a function
(2) Effective in only a file
(3) Effective in the entire program

There are following two storage classes for a function:

(1) Effective in only a file
(2) Effective in the entire program

In the C language, these storage classes can be specified for each variable and each function.
Effective utilization of these storage classes makes it possible to protect the variables or
functions that have been created or conversely share them among the members of a team.

Program

File

Function

File

Storage classes of variable (3)

(2)

(1)

Storage classes of function (2)

(1)

Function Function Function Function Function

Effective
range

Effective
range

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 44 of 102

1.6.2 Storage Classes of Variables
The storage class of a variable is specified when writing type declaration. There are following two
points in this:
(1) External and internal variables (→location where type declaration is entered)
(2) Storage class specifier (→specifier is added to type declaration)
This section explains how to specify storage classes for variables.

External and Internal Variables

This is the simplest method to specify the effective range of a variable. The variable effective
range is determined by a location where its type declaration is entered. Variables declared
outside a function are called "external variables" and those declared inside a function are
called "internal variables". External variables are global variables that can be referenced
from any function following the declaration. Conversely, internal variables are local
variables that can be effective in only the function where they are declared following the
declaration.

Storage Class Specifiers

The storage class specifiers that can be used for variables are auto, static, register, and
extern. These storage class specifiers function differently when they are used for external
variables or internal variables. The following shows the format of a storage class specifier.

 storage class specifier ∆ data type ∆ variable name;

int main(void);
int func(void);

External to function
int tmp;

int main(void)
{
 int a;

Internal to function
Effective range of a

}

External to function
int func(void)
{
 int b;

Internal to function
Effective range of b

}

Effective range
of tmp

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 45 of 102

Storage Classes of External Variable

If no storage class specifier is added for an external variable when declaring it, the variable
is assumed to be a global variable that is effective in the entire program. On the other hand,
if an external variable is specified of its storage class by writing "static" when declaring it,
the variable is assumed to be a local variable that is effective in only the file
where it is declared. Write the specifier "extern" when using an external variable that is
defined in another file like "mode" in source file 2 of the following.
External variables which do not set the initial value are assigned to the N_UDATA segment
on data area. External variables which set the initial value are assigned to the N_IDATA
segment on data area.

Storage Classes of Internal Variable

An internal variable declared without adding any storage class specifier has its area
allocated in C-ARGN segment on the data area. Therefore, such a variable is shared with
each function ad it is initialized each time the function is called.
On the other hand, internal variables whose storage class is specified to be "static", which do
not set the initial value are assigned to the N_UDATA segment on data area and which set
the initial value are assigned to the N_IDATA segment on data area. The variable is
initialized only once when starting up the program.

char mode;
static int count;

void func1(void)
{
 mode = STOP;
 count = 0;

Source file 1

extern char mode;
static int count;

void func2(void)
{
 mode = BACK;
 count = 100;

Source file 2 Memory space

Stack area

Data area

Common mode

count of source
file 1

count of source
file 2

void func1(void)
{
 char flag = 0;
 static int count = 0;

 flag = SET;
 count = count + 1;
 func2();

}
void func2(void)
{
 char flag = 0;
 static int count = 0;

 flag = SET;
 count = count + 1;

}

Source file

Memory space

Stack area

Data area

Return address

Count of func1

Count of func2

CSTACK
segment

C_ARGN
segment

N_IDATA
segment

Flag of func1

Flag of func2
(Shared)

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 46 of 102

1.6.3 Storage Classes of Functions
The storage class of a function is specified on both function defining and function calling sides.
The storage class specifiers that can be used here are static and extern.
This section explains how to specify the storage class of a function.

Global and Local Functions

(1) If no storage class is specified for a function when defining it

This function is assumed to be a global function that can be called and used from any
other source file.

(2) If a function is declared to be "static" when defining it
This function is assumed to be a local function that cannot be called from any other source
file.

(3) If a function is declared to be "extern" in its type declaration
This storage class specifier indicates that the declared function is not included in the
source file where functions are declared, and that the function in some other source file be
called. However, only if a function has its type declared--even though it may not be
specified to be "extern", if the function is not found in the source file, the function in some
other source file is automatically called in the same way as when explicitly specified to be
"extern".

void func1(void);
extern void func2(void);
void func3(void);

void main(void)
{
 func1();
 func2();
 func3();
}

Source file 1

void func1(void)
{
 …
}

void func2(void)
{
 …
}

void func3(void)
{

}

Source file 2

Can be called

Can be called

Can not be called

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 47 of 102

Summary of Storage Classes

Storage classes of variables and storage classes of functions are summarized below.

Storage Classes of Variables

Storage class External variable Internal variable

Storage class
specifiers
omitted

Global variables that can also be
referenced from other source files.
[Allocated in segment N_UDATA
and N_IDATA]
[Maintain data]

Variables that are effective in only the function.
[Allocated in a segment C_ARGN
when executing the function.]
[Not maintain data]

auto

Variables that are effective in only the function.
[Allocated in a segment C_ARGN
when executing the function.]
[Not maintain data]

static

Local variables that cannot be referenced
from other source files.
[Allocated in segment N_UDATA
and N_IDATA]
[Maintain data]

Variables that are effective in only the function.
[Allocated in segment N_UDATA
and N_IDATA.]
[Maintain data]

register
Variables that are effective in only the function.
[Allocated in segment C_ARGN.]
[Not maintain data]

extern

Variables that reference variables in other
source files.
[Not allocated in memory]
[Maintain data]

Variables that reference variables in other
source files.
(cannot be referenced from other functions.)
[Not allocated in the memory]

Storage Classes of Functions
Storage class Types of functions
Storage class

specifiers omitted
Global functions that can be called and executed from other source files
[Specified on function defining side]

static
Local functions that can not be called and executed from other source files
[Specified on function defining side]

extern
Calls a function in other source files
[Specified on function calling side]

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 48 of 102

1.7 Arrays and Pointers

1.7.1 Arrays
Arrays and pointers are the characteristic features of the C language.
This section describes how to use arrays and explains pointers that provide an important means of
handling the array.

What is an Array?

The following explains the functionality of an array by using a program to find the total age
of family members as an example. The family consists of parents (father = 29 years old,
mother = 24 years old), and a child (brother = 4 years old).
In this program, the number of variable names increases as the family grows. To cope with
this problem, the C language uses a concept called an "array". An array is such that data of
the same type (int type) are handled as one set. In this example, father's age (father),
mother's age (mother), and child's age (brother) all are not handled as separate variables,
but are handled as an aggregate as family age (age). Each data constitutes an "element" of
the aggregate. Namely, the 0'th element is father, the 1st element is mother, and the 2nd
element is the brother.

Example Finding Total Age of a family (1)

In this example, we will find the total age of family members (father, mother and brother).

Array

Multiple
variables of the
same data type

29
0'th element (= father)
1st element (= mother)

father

24
mother

4

brother
29
24
4

age

void main(void)
{
 int father = 29;
 int mother = 24;
 int brother = 4;
 int total;

 total = father + mother + brother;
}

void main(void)
{
 int father = 29;
 int mother = 24;
 int brother = 4;
 int sister 1 = 1;
 int sister 2 = 1;
 :
 int total;

 total = father + mother + brother + sister1 + sister2 + …;
}

As the family grows, so do the type declaration of variables
and the execution statements to be initialized.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 49 of 102

1.7.2 Creating an Array
There are two types of arrays handled in the C language: "one-dimensional array" and
"two-dimensional array".
This section describes how to create and reference each type of array.

One-dimensional Array

A one-dimensional array has a one-dimensional (linear) expanse. The following shows the
declaration format of a one-dimensional array.

Data type array name [number of elements];

When the above declaration is made, an area is allocated in memory for the number of
elements, with the array name used as the beginning label.
To reference a one-dimensional array, add element numbers to the array name as subscript.
However, since element numbers begin with 0, the last element number is 1 less than the
number of elements.

Finding Total Age of a Family (2)

In this example, we will find the total age of family members by using an array.

char buff1[3];
int buff2[3];

• Declaration of one-dimensional array

8 bits

buff1[0] buff1→
buff1[1]
buff1[2]

buff2[0] buff2→
buff2[1]
buff2[2]

char buff1[3] = {
 'a', 'b', 'c'
};

int buff2[3] = {
 10, 20, 30
};

• Declaration and initialization of one-dimensional array

8 bits

'a' buff1→
'b'
'c'

10 buff2→
20
30

#define MAX 3 (Note)

void main(void)
{
 int age[MAX];
 int total = 0;
 int i;

 age[0] = 29;
 age[1] = 24;
 age[2] = 4;

 for(i = 0; i < MAX; i++){
 total += age[i];
 }
}

(Note): #define MAX 3: Synonym defined as MAX = 3. (Refer to Section 1.9, Preprocess Commands".)

#define MAX 3

void main(void)
{
 int age[MAX] = {
 29, 24, 4
 };

 int total = 0;
 int i;

 for(i = 0; i < MAX; i++){
 total += age[i];
 }
}

or
Initialized simultaneously
when declared.

By using an array, it is
possible to utilize a repeat
statement where the number
of elements are used as
variables.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 50 of 102

Two-dimensional Array

A two-dimensional array has a planar expanse comprised of "columns" and "rows". Or it can
be considered to be an array of one-dimensional arrays. The following shows the declaration
format of a two-dimensional array.

Data type array name [number of rows] [number of columns];

To reference a two-dimensional array, add "row numbers" and "column numbers" to the
array name as subscript. Since both row and column numbers begin with 0, the last row (or
column) number is 1 less than the number of rows (or columns).

Row 0
Column 0

Row 0
Column 1

Row 0
Column 2

Row 0
Column 3

Row 1
Column 0

Row 1
Column 1

Row 1
Column 2

Row 1
Column 3

Row 2
Column 0

Row 2
Column 1

Row 2
Column 2

Row 3
Column 3

char buff1[2][3];

• Declaration and initialization of two-dimensional array

buff1[0][0]buff1[0]→
buff1[0][1]
buff1[0][2]
buff1[1][0]buff1[1]→
buff1[1][1]
buff1[1][2]

char buff1[2][3] = {
 {'a', 'b', 'c'},
 {'d', 'e', 'f'}
};

• Declaration and initialization of two-dimensional array

'a' buff1[0]→
'b'
'c'
'd' buff1[1]→
'e'
'f'

int buff2[2][3]; buff2[0][0]buff2[0]→

buff2[0][1]

buff2[1]→

buff2[0][2]

buff2[1][0]

buff2[1][1]

10 buff2[0]→

20

buff2[1]→

30

40

50

int buff2[2][3] = {
 10, 20, 30, 40, 50, 60
};

When initializing a
two-dimensional array
simultaneously with
declaration,
specification of the number of
rows can be omitted. (Number
of columns cannot be omitted.)

• Concept of two-dimensional array

Columns→
Rows

↓

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 51 of 102

1.7.3 Pointers
A pointer is a variable that points to data; i.e., it indicates an address.
A "pointer variable" which will be described here handles the "address" at which data is stored as a
variable. This is equivalent to what is referred to as "indirect addressing" in assembly language.
This section explains how to declare and reference a pointer variable.

Declaring a Pointer Variable

The format show below is used to declare a pointer variable.

Pointed data type ∗ pointer variable name;

However, it is only an area to store an address that is allocated in memory by the above
declaration. For the data proper to be assigned an area, it is necessary to write type
declaration separately.

• Pointer variable declaration

char *p;

p
Address

*p

No area is allocated.

Char type
data

int *p;

p
Address

*p
Int type

data

char **p;

p
Address

**p Char type
data

*p
Address

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 52 of 102

Relationship between Pointer Variables and Variables

The following explains the relationship between pointer variables and variables by using a
method for substituting constant '5' by using pointer variable 'p' for variable of int type 'a' as
an example.

Operating on Pointer Variables

Pointer variables can be operated on by addition or subtraction. However, operation on
pointer variables differs from operation on integers in that the result is an address value.
Therefore, address values vary with the data size indicated by the pointer variable.

The data length of variables in C language programs are determined by the data type. For a
pointer variable, since its content is an address, the data length provided for it is sufficiently
large to represent the entire address space that can be accessed by the microprocessor used.

Address modifier
↓void main(void)

{
 int a = 0 ;
 int b ;
 int *p ;

 p = &a ;
 *p = 5 ;
 b = a ;
}

This "&a" indicates the address of variable 'a'.
This "*p" indicates the content of variable 'a'.

a is “5”

Address + (integer X sizeof (type))
Address - (integers X izeof (type))

ptr

Address 0404H

int * ptr;

ptr = (int *)0x0400;
ptr = ptr + 2;

The pointer variable ptr is an int type of variable.
When calculated by sizeof(int), the size of the
int-type variable is found to be 2 bytes.
Therefore, p + 2 points to address 0404H.

Address 0402H

Address 0400H

Column Data Length of Pointer Variable

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 53 of 102

1.7.4 Using Pointers
This section shows some examples for effectively using a pointer.

Pointer Variables and One-dimensional Array

When an array is declared by using subscripts to indicate its element numbers, it is encoded
as "index addressing". In this case, therefore, address calculations to determine each
address "as reckoned from the start address" are required whenever accessing the array.
On the other hand, if an array is declared by using pointer variables, it can be accessed in
indirect addressing.

Pointer Variables and Two-dimensional Array

As in the case of a one-dimensional array, a two-dimensional array can also be accessed by
using pointer variables.

'a' str[0] or *p void main(void)
{
 char str[] = "ab";
 char *p;
 char t;

 p = str;
 t = *(p + 1);

The start address of a one-dimensional array can be obtained by "str".
(Address modifier '&' is unnecessary.)

str

'\0' str[2] or*(p+2)
'b' str[1] or *(p+1)

'b' t

p

'a' mtx[0][0]
void main(void)
{
 char mtx[2][3] = {
 "ab", "cd"
 };
 char *p;
 char t;

 p = mtx[1];
 t = *(p + 1);

The start address of the first row of a two-dimensional array
"mtx" can be obtained by "mtx[1]". ('&' is unnecessary.)

mtx[0]

'\0' mtx[0][2]
'b' mtx[0][1]

p

'd' mtx[1][1] or *(p+1)

mtx[1]

'd' t

'\0' mtx[1][2] or *(p+2)

'c' mtx[1][0] or *p

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 54 of 102

Passing Addresses between Functions

The basic method of passing data to and from C language functions is referred to as "Call by
Value". With this method, however, arrays and character strings cannot be passed between
functions as arguments or returned values.
Used to solve this problem is a method, known as "Call by Reference", which uses a pointer
variable. In addition to passing the addresses of arrays or character strings between
functions, this method can be used when it is necessary to pass multiple data as a returned
value.
Unlike the Call by Value method, this method has a drawback in that the independency of
each function is reduced, because the data in the calling function is rewritten directly.
The following shows an example where an array is passed between functions using the Call
by Reference method.

In addition to the Call by Value and the Call by Reference methods, there is another method
to pass data to and from functions. With this method, the data to be passed is turned into an
external variable.
This method results in loosing the independency of functions and, hence, is not
recommended for use in C language programs. Yet, it has the advantage that functions can
be called at high speed because entry and exit processing (argument and return value
transfers) normally required when calling a function are unnecessary. Therefore, this
method is frequently used in ROM'ed programs where general-purpose capability is not an
important requirement and the primary concern is high-speed processing.

<Calling function>

#define MAX 5

void cls_str(char *);

void main(void)
{
 char str[MAX];
 :
 cls_str(str);
 :
}

str[0]

*p
||

str

The array's start
address is passed
as argument.

void cls_str(char *p)
{
 int i;
 :
 for(i = 0; i < MAX; i++){
 *(p + i) = 0;
 }
}

<Called function>

str[1]

p

Received as pointer variable

The array body is
operated on.

Column Passing Data between Functions at High

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 55 of 102

1.7.5 Placing Pointers into an Array
This section explains a "pointer array" where pointer variables are arranged in an array.

Pointer Array Declaration

The following shows how to declare a pointer array.

Data type ∗ array name [number of elements];

char *ptr1[3];
int *ptr2[3];

• Pointer array declaration

ptr1[0] char type data ptr1→
ptr1[1] char type data
ptr1[2] char type data

ptr2[2] int type data

ptr2→ ptr2[0] int type data
ptr2[1] int type data

char *ptbl[4] = {
 "STOP";
 "START";
 "RESET";
 "RESTART";
};

ptbl[0]
Address of 'S'

ptbl→
• Pointer array initialization

ptbl[1]
Address of 'S'

ptbl[2]
Address of 'S'

ptbl[3]
Address of 'R'

'S' 'T' 'O' ' P' '\0'

'S' 'T' 'A' 'R' 'T' '\0'

'R' 'E' 'S' 'E' 'T' '\0'

'R' 'E' 'S' 'T' 'A' 'R' 'T' '\0'

Each character string's start address is stored here.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 56 of 102

Pointer Array and Two-dimensional Array

The following explains the difference between a pointer array and a two-dimensional array.
When multiple character strings each consisting of a different number of characters are
declared in a two-dimensional array, the free spaces are filled with null code "\0". If the
same is declared in a pointer array, there is no free space in memory. For this reason, a
pointer array is a more effective method than the other type of array when a large amount of
character strings need to be operated on or it is necessary to reduce memory requirements to
a possible minimum.

'B' 'o' 's' 't' 'o' 'n' '\0'

'N' 'a' 'r' 'a' '\0' '\0' '\0'

'L' 'o' 'n' 'd' 'o' 'n' '\0'

char name[3][7] = {
 "Boston",
 "Nara",
 "London"
};

• Two-dimensional array

char *name[3] = {
 "Boston",
 "Nara",
 "London"
};

name[0]
Address of 'B'

ptbl→
• Pointer array

name[1]
Address of 'N'

name[2]
Address of 'L'

'N' 'a' 'r' 'a' '\0'

'B' 'o' 's' 't' 'o' 'n' '\0'

Filled with null code.

'L' 'o' 'n' 'd' 'o' 'n' '\0'

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 57 of 102

1.7.6 Table Jump Using Function Pointer
In assembly language programs, "table jump" is used when switching processing load increases
depending on the contents of some data. The same effect as this can be obtained in C language
programs also by using the pointer array described above.
This section explains how to write a table jump using a "function pointer".

What Does a Function Pointer Mean?

A "function pointer" is one that points to the start address of a function in the same way as
the pointer described above. When this pointer is used, a called function can be turned into a
parameter. The following shows the declaration and reference formats for this pointer.

Switching Arithmetic Operations Using Table Jump

The method of calculation is switched over depending on the content of variable "num".

<Declaration format> Type of return value (*function pointer name) (data type of argument);
<Reference format> Variable in which to store return value = (*function pointer name) (argument);

/* Prototype declaration ***************/
int calc_f(int, int, int);
int add_f(int, int), sub_f(int, int);
int mul_f(int, int), div_f(int, int);

/* Jump table **************************/
int (*const jmptbl[4])(int, int) = {

add_f, sub_f, mul_f, div_f
};

void main(void)
{

int x = 10, y = 2;
int num, val;

num = 2;
if(num < 4){

val = calc_f(num, x, y);
}

}

int calc_f(int m, int x, int y)
{

int z;
int (*p)(int, int);

P = jmptbl[m];
z =(*p)(x, y);
return z;

}

Setting of jump address

Function call using a function pointer

Function pointers arranged in an array

Start address
of "add_f jmptbl[0]

Start address
of "sub_f

Start address
of "mul_f

Start address
of "div_f

jmptbl[1]

jmptbl[2]

jmptbl[3]

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 58 of 102

1.8 Struct and Union

1.8.1 Struct and Union
The data types discussed hereto (e.g., char, signed int, and unsigned int types) are called the "basic
data types" stipulated in compiler specifications.
The C language allows the user to create new data types based on these basic data types. These are
"struct" and "union".
The following explains how to declare and reference structs and unions.

From Basic Data Types to Structs

Structs and unions allows the user to create more sophisticated data types based on the
basic data types according to the purposes of use. Furthermore, the newly created data types
can be referenced and arranged in an array in the same way as the basic data types.

Collectively
managed

Basic data types
(elements of struct)

More sophisticated
data types(structs)

 Names
addresses
Telephone numbers
Dates of birth

 Names

 Address

 Telephone
number

 Dates of birth

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 59 of 102

1.8.2 Creating New Data Types
The elements that constitute a new data type are called "members". To create a new data type,
define the members that constitute it. This definition makes it possible to declare a data type to
allocate a memory area and reference it as necessary in the same way as the variables described
earlier.
This section describes how to define and reference structs and unions, respectively.

Difference between Struct and Union

When allocating a memory area, members are located differently for structs and unions.
(1) Struct: Members are sequentially located.
(2) Union: Members are located in the same address.

(Multiple members share the same memory area. The union size is the largest size in the
members which are assigned to the same address.)

Definition and Declaration of Struct

To define a struct, write "struct".

The above description creates a data type "struct struct tag". Declaration of a struct with
this data type allocates a memory area for it in the same way as for an ordinary variable.

struct struct tag {
 Member 1;
 Member 2;

:
};

struct struct tag struct variable name;

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 60 of 102

Referencing Struct

To refer to each member of a struct, use a period '.' that is a struct member operator.

 struct variable name.member name

The initial data of each member is written and arranged according to the declaration order
(following types) when structure variables are initialized.

a.name name

number

section[0]
section[1]
section[2]
section[3]
section[4]

work_year

a.number

a.section[0]
to

a.section[4]

a.work_year

a

b

struct person{
 char *name;
 long number;
 char section[5];
 int work_year;
};

void main(void)
{
 struct person a;
 a.name = "SATOH";
 a.number = 10025;
 a.section = "T511";
 a.work_year = 25;

a.nameAddress of
"SATOH"

10025

'T'
'5'
'1'
'1'
'\0'

25

a.number

a.section[0]
to

a.section[4]

a.work_year

struct person a = {
 "SATOH", 10025, "T511", 25
};

• Initialization of struct variable

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 61 of 102

Example for Referencing Members Using a Pointer

To refer to each member of a struct using a pointer, use an arrow '->'.

Pointer->member name

A
or
*p

p

#define LYEAR 20
struct person{
 char *name;
 long number;
 char section[5];
 int work_year;
};

struct person a = {
 "SATOH", 10025, "T511", 25
};

void main(void)
{
 struct person *p;
 p = &a;
 if(p->wprk_year > LYEAR){

p->name Addres of
"SATOH"

10025

'T'
'5'
'1'
'1'
'\0'

25

p->number

p->section[0]
to

p->section[4]

p->work_year

&a

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 62 of 102

Unions

Unions are characteristic in that an allocated memory area is shared by all members.
Therefore, it is possible to save on memory usage by using unions for multiple entries of such
data that will never exist simultaneously. Unions also will prove convenient when they are
used for data that needs to be handled in different units of data size, e.g., 16 bits or 8 units,
depending on situation.
To define a union, write "union". Except this description, the procedures for defining,
declaring, and referencing unions all are the same as explained for structs.

Since structs and unions require the keywords "struct" and "union", there is a tendency that
the number of characters in defined data types increases. One method to circumvent this is
to use a type definition "typedef".

typedef existing type name new type name;

When the above description is made, the new type name is assumed to be synonymous with
the existing type name and, therefore, either type name can be used in the program.
The following shows an example of how "typedef" can actually be used.

all byte

a

b

union pack{
 long all;
 char byte[4];
 short word[2];
};

void main(void)
{
 union pack a, b ;

wor

[0]

[1]

[2]

[3]

[0]

[1]

A 4-byte area is shared by all,
byte, and word.

union data{
 char a;
 short b;
 long c;
};

struct data sdata, *sptr;

When defining types, structure (union)
 tag names can be omitted.

typedef struct{
 char a;
 short b;
 long c;
}DATA;

DATA sdata, *sptr;

Column Type Definition

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 63 of 102

1.9 Preprocess Commands

1.9.1 Preprocess Commands of ICC740
The C language supports file inclusion, macro function, conditional compile, and some other
functions as "preprocess commands".
The following explains the main preprocess commands available with ICC740.

Preprocess Command List of ICC740

Preprocess commands each consist of a character string that begins with the symbol '#' to
discriminate them from other execution statements. Although they can be written at any
position, the semicolon ';' to separate entries is unnecessary. The following lists the main
preprocess commands that can be used in ICC740.

Description Function

#include Takes in a specified file.

#define Replaces character string and defines macro.

#undef Cancels definition made by #define.

#if to #elif to #else to #endif Performs conditional compile.

#ifdef to #elif to #else to #endif Performs conditional compile.

#ifndef to #elif to #else to #endif Performs conditional compile.

#error
Outputs message to standard output devices before suspending
processing.

#line Specifies a file's line numbers.

#pragma Instructs processing of ICC740's extended function.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 64 of 102

1.9.2 Including a File
Use the command "#include" to take in another file. ICC740 requires different methods of
description depending on the directory to be searched.
This section explains how to write the command "#include" for each purpose of use.

Searching for Standard Directory

#include <file name>

This statement takes in a file from the directory specified with the startup option '–I.' If the
specified file does not exist in this directory, ICC740 searches the standard directory that is
set with ICC740's environment variable "C_INCLUDE" as it takes in the file.
As the standard directory, normally specify a directory that contains the "standard include
file".

Searching for Current Directory

#include "file name"

This statement takes in a file from the current directory. If the specified file does not exist in
the current directory, ICC740 searches the directory specified with the startup option '–I'
and the directory set with ICC740's environment variable " C_INCLUDE" in that order as it
takes in the file.
To discriminate your original include file from the standard include file, place that file in the
current directory and specify it using this method of description.

Example for Using "#include"

If the specified file cannot be found in any directory searched, ICC740 outputs an include
error.

/*include**********/

#include <stdio.h>

#include "usr_global.h"

/*main function**********/
void main (void)
{

}

The standard include file is read from
the standard directory.

The header of a global variable is read
from the current directory.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 65 of 102

1.9.3 Macro Definition
Use the "#define identifier" for character string replacement and macro definition. Normally use
uppercase letters for this identifier to discriminate it from variables and functions.
This section explains how to define a macro and cancel a macro definition.

Defining a Constant

A constant can be assigned a name. This provides an effective means of using definitions in
common to eliminate magic numbers (immediate with unknown meanings) in the program.

Defining a Character String

A string can be assigned a name.

#define THRESHOLD 100
#define UPPER_LIMIT (THRESHOLD+50)
#define LOWER_LIMIT (THRESHOLD-50)

Defines that the threshold = 100.

Sets the upper limit at +50.

Sets the lower limit at -50.

#define TITLE "Position control program"
char mess[] = TITLE; The defined character string is inserted

at the position of "TITLE".

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 66 of 102

Defining a Macro Function

The command "#define" can also be used to define a macro function. This macro function
allows arguments and return values to be exchanged in the same way as with ordinary
functions. Furthermore, since this function does not have the entry and exit processing that
exists in ordinary functions, it is executed at higher speed.
What's more, a macro function does not require declaring the argument's data type.

Canceling Definition

Replacement of the identifier defined in "#define" is not performed after "#undef".
However, do not use "#undef" for the following four identifiers because they are the
compiler's reserved words.

• _FILE_ ; Source file name
• _LINE_ ; Line number of current source file
• _DATE_ ; Compilation date
• _TIME_ ; Compilation time
• _IAR_SYSTEMS_ICC_ ; ICC compiler identifier
• _STDC_ ; ICC compiler identifier
• _TID_ ; Target identifier
• _VER_ ; Compiler version number

#define ABS(a) ((a) > 0 ? (a) : -(a))
Macro function that returns the
argument's absolute value.

#define SEQN(a, b, c){\
 func1(a) ; \
 func2(b) ; \
 func3(c) ; \
}

The symbol "\" denotes successive description.
Descriptions entered even after line feed are
assumed to be part of a continuous character string.

Enclose a complex statement
with brackets '{' and '}'.

#undef identifier

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 67 of 102

1.9.4 Conditional Compile
ICC740 allows you to control compilation under three conditions.
Use this facility when, for example, controlling function switchover between specifications or
controlling incorporation of debug functions.
This section explains types of conditional compilation and how to write such statements.

Various Conditional Compilation

The following lists the types of conditional compilation that can be used in ICC740.

Description Content

#if Condition expression
A

#else
B

#endif

If the condition expression is true (not 0), ICC740 compiles
block A; if false, it compiles block B.

#ifdef identifier
A

#else
B

#endif

If an identifier is defined, ICC740 compiles block A;
if not defined, it compiles block B.

#ifndef identifier
A

#else
B

#endif

If an identifier is not defined, ICC740 compiles block A;
if defined, it compiles block B.

In all of these three types, the "#else" block can be omitted. If classification into three or
more blocks is required, use "#elif" to add conditions.

Specifying Identifier Definition

To specify the definition of an identifier, use "#define" or ICC740 compiler option '-D'.

#define identifier ← Specification of definition by "#define"

%ICC740 -D identifier ← Specification of definition by compiler option

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 68 of 102

Example for Conditional Compile Description

The following shows an example for using conditional compilation to control incorporation of
debug functions.

It defines an identifier "DEBUG". (Set to debug mode.)
#define DEBUG

void main(void)
{

#ifdef DEBUG
 check_output();
#else
 output();
#endif

}

#ifdef DEBUG
void check_output(void)
{

}
#endif

When in debug mode, it incorporates "debug function".

When in debug mode, it calls "debug function;"
otherwise, it calls "ordinary output function". In this
case, it calls "debug function".

APPLICATION NOTE

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 69 of 102

Chapter 2

Downloading a Program into the ROM

2.1 Memory Allocation

2.2 Initialization Setup Files

2.3 Extended Functions for Putting into the ROM

2.4 Linkage with Assembly Language

2.5 Interrupt Handling

This chapter describes the precautions to be taken when creating a
built-in program centering round the extended functions of the
ICC740.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 70 of 102

2.1 Memory Allocation

2.1.1 Types of Codes and Data
The codes and data that comprise a program come in various types, including those that can or
cannot be rewritten and those that have or do not have initial values. All codes and data must be
located in the ROM, RAM or stack areas according to their properties.
This section describes the types of codes and data that are generated by the ICC740.

Codes and data generated by the ICC740

The following shows the types of codes and data generated by the ICC740 and the areas in which
they are located.

Handling of static variables with initial values

The “static variables with specified initial values” are rewritable data and must therefore be
located in RAM. However, if they are located in RAM, initial values cannot be set for them.
The ICC740 reserves an area for the static variables that come with specified initial values in
RAM and stores their initial values in ROM. Then, in a startup program, it copies the initial
values in ROM to the reserved area in RAM.

RAM area
(N_IDATA)

ROM area
(N_CDATA

RAM area
(N_IDATA)

0x41

0x34

0x12

Initial value of “moji”

Initial value of “seisu”

moji:

seisu:

Startup program

0x41

0x34

0x12

Block transferred
from ROM to RAM

Initial value setup
completed

moji:

seisu:

char moji = 'A' ;
int seisu = 0x1234 ;
void main (void)
{

• • •

}

Dynamic
variable

Static
variable

Variable data With initial values
specified

With no initial values
specified

Constant or
string

Program

Fixed data

C_ARGN segment

N_IDATA or N_CDATA segment

N_UDATA segment

CSTR or CONST segment

CODE segment

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 71 of 102

2.1.2 Segments Managed by the ICC740
The ICC740 manages the areas in which data or codes have been located as “segments.”
This section describes the types of segments generated and managed by the ICC740 and how they
are managed.

Segment configuration

The ICC740 classifies data by types as it manages segments. The configuration of segments
managed by the ICC740 is shown below.

Segment name Content Location

BITVARS Static bit variable storage RAM Z
ZPAGE Library variables (located in zero page) RAM Z

C_ARGZ
Stores Auto variables and arguments to functions (variables using the
zpage keyword)

RAM Z

Z_UDATA
Stores external variables without specified initial values (variables using
the zpage keyword)

RAM Z

Z_IDATA
Stores external variables with specified initial values (variables using the
zpage keyword)

RAM Z

EXPR_STACK
Expression stack (whose size is specified in lnk740.xcl, manipulated by
register X)

RAM Z

INT_EXPR_STACK
Interrupt expression stack (whose size is specified in lnk740.xcl,
manipulated by register X)

RAM Z

CSTACK
Ordinary stack (whose size is specified in lnk740.xcl, with location
specified in cstartup)

RAM Z/N

NPAGE Library variables (located in other than zero page) RAM N
C_ARGN Stores Auto variables and arguments to functions RAM N
N_UDATA Stores external variables without specified initial values RAM N
N_IDATA Stores external variables with specified initial values RAM N

ECSTR
Writable character strings, for which area is reserved when the ICC740
option -y is specified

RAM N

RF_STACK
Stack used during recursive calls (whose size normally is 0; 256 bytes or
more is reserved when used)

RAM N

RCODE Stores library code ROM -
Z_CDATA Stores initialization constants (initial values for the Z_IDATA segment) ROM -
N_CDATA Stores initialization constants (initial values for the N_IDATA segment) ROM -
C_ICALL Table for indirect function calls ROM -
C_RECFN Table for recursive functions ROM -
CSTR Stores constants and strings ROM -
CCSTR Stores initial values when the ICC740 option -y is specified ROM -
CODE Stores a program ROM -
CONST Stores constants ROM -
C_FNT Special page jump table ROM -
INTVEC Interrupt vector table ROM -

*Z: Located in zero page
*N: Located in other than zero page
*Z/N: Located in zero page or page 1

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 72 of 102

2.1.3 Controlling Memory Allocation
The ICC740 allows segments to be located in memory efficiently in a manner suitable for the user
system.

Segment locations in memory

The following shows how segments will be located in memory depending on data types.

The sizes marked by #1 are set by the linker XLINK. The sizes marked by #2 are set in the
lnk740.xcl file.

RF STACK

ECSTR

N IDATA

N UDATA

C ARGN

NPAGE

CSTACK0x100

0x23F

RAM other than zero
page (N page memory)

#1

#2

EXPR STACK

INT EXPR STACK

Z IDATA

Z UDATA

C ARGZ

ZPAGE

BITVARS

(SFR) 0x00

0xF

Zero page RAM
(Z page memory)

#1

#2

0x40

CCSTR

CODE

CSTR

C RECFN

C ICALL

N CDATA

Z CDATA

RCODE
0xC080

0xFF00

ROM
(code memory)

CONST

C FNT

INTVEC

0xFFF

0xFFC

#1

#2

Varies with each MCU

Varies with each MCU

Varies with each MCU

Movable within
special page

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 73 of 102

Adding segment names (“lnk740.xcl”)

The segments generated by the ICC740 have the order specified in the link command file
“lnk740.xcl” in which they are to be located. The newly created segments must each have a
segment name added in the link command file “lnk740.xcl.”

Forcibly locating segments in ROM (const qualifier)

If a variable has its initial value specified during type declaration, both RAM and ROM areas
are reserved. However, if this variable is of a fixed value that does not change during program
execution, you may write the “const qualifier” when declaring its type. In that case, only a
ROM area is reserved, with no RAM areas used, helping to save on the amount of memory
needed. Furthermore, because explicit assignments are checked when compiling, it is possible
to inspect whether unrewritable areas are rewritten.

-! - lnk740.xcl -

 XLINK 4.44, or higher, command file to be used with the 740
 C-compiler V1.xx
 Usage: xlink your_file(s) -f lnk740

•

•

•

-! Setup all read-only segments (PROM) at address 8000 -!
-Z(CODE)RCODE,Z_CDATA,N_CDATA,C_ICALL,C_RECFN,CSTR,CCSTR,CODE,CONST,NEW_CODE=C080-
FEFF

•

•

•

Add a segment name for the
newly created segment

N_IDATA segment
char a = 5;

const char c = 10;

void main(void)
{
 a = 6;

 c = 5;
 :
}

RA

a

RO

c

0x0

0x0

A 2-byte area is
reserved

Only 1 byte is
reserved

OK!

Error occurs
when compiling

Startup
program

Copy

N_CDATA segment

CONST segment

const data type variable name;

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 74 of 102

#pragma codeseg (segment name to be changed)

Change the name of a program segment generated by the ICC740.

func1 is expanded with the default segment name, whereas func2 is expanded with a changed
segment name. The new segment name with which to be changed must not be a duplicate of
any reserved segment name of the compiler.

In addition to the above, there are following cases in which a segment name is changed (those
that are located in a named segment).

#pragma memory=constseg (segment name) Locates a variable in the named segment
Example

#pragma memory=constseg (TABLE)
char ar[] = { 1, 3, -1, 5, -3 } ; ← Places the constant array arr in the ROM segment “TABLE”
#pragma memory=default ← Restores memory allocation to the default area

Note that if this constant array is to be accessed in another module, an equivalent declaration
must be written in that module too.

#pragma memory=dataseg (segment name) Locates a variable in the named segment
Example

#pragma memory=dataseg (USRDAT) ← Places three variables in the RAM area named “USRDAT”
char USRDAT_data1 ;
char USRDAT_data2 ;
int USRDAT_data3 ;
#pragma memory=default

Note that if these variables are to be accessed from another module, an equivalent extern
declaration must be written.

#pragma memory=zpage Locates a variable in the Z page area (0x00–0xFF)
Example

#pragma memory=zpage
int buf[5] ; ← Places the variables buf and f in ZPAGE memory
float f ;
no_init char *str[5] ; ← Locates the variable str forcibly in NO_INIT memory
#pragma memory=default
int a ; ← Locates the variable a in the DATA area

void func1(void)
{
 • • •

}

#pragma codeseg (NEW_CODE)

void func2(void)
{
 • • •
}

 RSEG CODE
func1:
 • • •

 RSEG
NEW_CODE
func2:
 • • •

Expansion
image

Column Changing segment names (#pragma codeseg)

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 75 of 102

2.2 Initialization Setup Files

2.2.1 Roles of the Initialization Setup Files
The ICC740 has two initialization setup files, namely the startup program “cstartup.s31” and the
link command file “lnk740.xcl.”
This section describes the roles and structures of the initialization setup files.

Roles of the initialization setup files

The following lists the roles of the initialization setup files:
(1) Reserve the stack area
(2) Initialize the microcomputer
(3) Initialize the static variable area
(4) Call the main function
(5) Set up the interrupt vector table

Structures of the initialization setup files

The following shows the structures of the initialization setup files.

* The shaded definitions and settings are detailed in Sections 2.2.2 and 2.2.3.

cstartup.s31

Definition of whether or not to use multiple interrupts

Initial setup

Program part

• Declare segments
(hardware stack, expression stack, and
interrupt expression stack)

• Set up multiple interrupts
• Set up interrupt expression stack
• Declare various segments used by

ICC740
• Set up stack operation page
• Set up data for multiple interrupts
• Initialize global variables
• Call main function
• Initialize recursive stack
• Initialize global variables with no initial

values specified (zero page memory)
• Initialize global variables with initial

values specified (zero page memory)
• Initialize global variables with no initial

values specified (N page memory)
• Initialize global variables with initial

values specified (N page memory)
• Set up interrupt vector table

lnk740.xcl

Initial setup

• Define static bit variable storage
• Set up zero page RAM
• Set up stack

(expression stack, interrupt expression
stack, and hardware stack)

• Set up other than zero page RAM
• Set up ROM
• Set up interrupt vector
• Set up special page
• Change printf, scanf, and other formats
• Specify library

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 76 of 102

2.2.2 Startup Program
For a built-in type program to be run normally, it is necessary to initialize the microcomputer and
set up the stack area before the program can be processed. Normally, these types of processing
cannot be written in C language. Therefore, a program for initial setup is written in assembly
language, separately from the C language source program. This is the “startup program.”
The startup program “cstartup.s31” available with the ICC740 is described in this and subsequent
sections.

Modifying the startup program

Change the following parts of the startup program to make it suitable for the user program to
be created.

Definition of whether or not to use multiple interrupts (“cstartup.s31”)

If multiple interrupts are not used, memory usage can be reduced 1 byte for RAM and 4 bytes for
ROM by defining a NO_INTERRUPTABLE_ISR segment. Where and how to define it is shown
below.

cstartup.s31

• Definition of whether or not to use
multiple interrupts

• Stack page settings
• Interrupt vector registration
• Reset vector registration

;---
; Turning off 'interruptable ISRs':
; Do this if you need the extra byte(s)
;
; 1. Uncomment the define below
; 2. Assemble this file
; 3. Include the result in your linker command file:
; -C cstartup.r31
;
; Variable '?IES_USAGE' and its initialization will no longer
; be included.
;---
;#define NO_INTERRUPTABLE_ISR

When not using multiple interrupts, remove the
semicolon (;) at the beginning of the line.
To use multiple interrupts, do not remove the
semicolon (;) at the beginning of the line.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 77 of 102

Setting up the stack page (“cstartup.s31”)

Set up the stack page. Make sure the value of each bit in the CPU mode register is set to suit
the operating environment. Where and how to write is shown below.

Registering the interrupt vector (“cstartup.s31”)

By altering the content of the INTVEC segment in the cstartup.s31 included with the ICC740,
register the interrupt processing functions as suitable for the microcomputer used. For this
purpose, rewrite the lines 352–372 as shown below.

If two or more interrupt sources are set at the same vector address, write them as one interrupt
source. Note also that there is no need to add a reset because the reset vector is set at the
bottom.
Declare the interrupt processing function to be externally referenced by using the directive
command EXTERN. If there is any undefined interrupt vector, we recommend setting init_C in
that vector as for a reset without leaving it blank, to prevent the program from running out of
control.
Write the beginning address of the INTVEC segment in the lnk740.xcl file.

;---;
; RCODE - where the execution actually begins ;
;---;
 RSEG RCODE:ROOT
init_C
 CLD ; set default mode
 CLT
 LDM #0CH, 3BH ; set stack page : 3803 Group
 LDX #LOW (SFE(CSTACK)-1) ; set up stack pointer
 TXS

Set up the stack page. By default, it is set in
page 1.
If it needs to be set in page 0, set up as
shown below (for the 3803 group’s case):

LDM #08H, 3BH

 COMMON INTVEC

?CSTARTUP_INTVEC:
 BLKB 0FFFEH - 0FFDCH -2 ; 3803 Group
#if 0
#if defined(MELPS_37600)
 BLKB 40H - 6 ; FFFA (FFC0 + 40 - 6) (-v2)
#elif defined(MELPS_MULDIV)
 BLKB 20H - 4 ; FFFC
#else
 BLKB 20H - 2 ; FFFE
#endif
#endif
?CSTARTUP_RESETVEC:
 WORD init_C

ENDMOD init_C

 EXTERN Int2, Timer1, Int0
 COMMON INTVEC

?CSTARTUP_INTVEC:
 WORD init_C ; +0x00 : BRK
 WORD init_C ; +0x02 : AD_SIO3T
 WORD init_C ; +0x04 : INT4_CNTR2
 WORD init_C ; +0x06 : INT3
 WORD Int2 ; +0x08 : INT2
 WORD init_C ; +0x0a : SIO2_TimerZ
 WORD init_C ; +0x0c : CNTR1_SIO3R
 WORD init_C ; +0x0e : CNTR0
 WORD init_C ; +0x10 : Timer2
 WORD Timer1 ; +0x12 : Timer1
 WORD init_C ; +0x14 : TimerY
 WORD init_C ; +0x16 : TimerX
 WORD init_C ; +0x18 : SIO1T
 WORD init_C ; +0x1a : SIO1R
 WORD init_C ; +0x1c : INT1
 WORD Int0 ; +0x1e : INT0_TimerZ
?CSTARTUP_RESETVEC:
 WORD init_C ; +0x20 : reset
 ENDMOD init_C

Example
for the
3803 group
(varies with
each
microcomp
uter used)

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 78 of 102

Registering the reset vector (“cstartup.s31”)

Set the reset vector (module name to be started after a reset).

?CSTARTUP_RESETVEC:
 WORD init_C

Start running from init_C after a reset.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 79 of 102

2.2.3 Link Command File
The link command file is used to set up details about the memory map.
The following describes the link command file “lnk740.xcl.”

Modifying the link command file

Change the following parts of the link command file to make it suitable for the user program to
be created.

lnk740.xcl

• Segment location and beginning/ending address settings
• Stack size settings
• Interrupt vector beginning/ending address settings
• Special page beginning/ending address settings
• Library specification

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 80 of 102

Segment location and beginning/ending address settings (“lnk740.xcl”)

Set the locations in memory and the beginning/ending addresses of the segments generated by
the ICC740. Segments with no beginning addresses specified are located at contiguous memory
addresses following the previously defined segment. Segments separated by a comma are
allocated to memory addresses in the order they are written.

* -Z(XXX): -Z is used to specify a segment location. XXX assigns type to the segment. The
following types are used in this link command file:

 BIT Bit memory
 ZPAGE Zero page data memory
 NPAGE Data memory accessed by specifying an absolute address
 CODE Code memory
* Segment name = YY (-ZZ): The segment is allocated in such a way that it will start from the

beginning address YY of the specified range. (ZZ specifies the ending address.) If no address
ranges need to be specified, write only the beginning address.

-! Setup "bit" segments (always zero if there is no need to reserve
 bit variable space for some other purpose) -!

-Z(BIT)BITVARS=200 -! address 40 (only) -!

-! Setup "ZPAGE" segments.
 We allocate 41-FF for zero page by default. It is assumed that
 00-3F is for SFRs while 40 is for a few "bit" variables.
 The following segment defintions (EXPR_STACK, INT_EXPR_STACK and
 CSTACK) that do not have an address given must fit inside the
 "41-FF" address range.
 If you have the CSTACK (processor stack) segment outside zero page,
 you have to give it an address and XLINK will no longer try to
 fit it within zero page. -!

-Z(ZPAGE)ZPAGE,C_ARGZ,Z_UDATA,Z_IDATA=41-FF

•

•
-! Setup "NPAGE" segments at address 1000-7FFF -!

-Z(NPAGE)NPAGE,C_ARGN,N_UDATA,N_IDATA,ECSTR=100-43F

•
•

-! Setup all read-only segments (PROM) at address 8000 -!

-Z(CODE)RCODE,Z_CDATA,N_CDATA,C_ICALL,C_RECFN,CSTR,CCSTR,CODE,CONST=C080-FEFF

Define the BITVARS segment.
Specify its location by an address in bit units
starting from the address 0.

Set up the zero page RAM.
Specify segments to be located in zero page
memory.

Set up other than the zero page RAM.
Specify segments to be located in N page memory.
If CSTACK is set in page 1, NPAGE is allocated
starting from the address following CSTACK.

Set up ROM.
Specify segments to be located in ROM and their
addresses (except the reserved area and interrupt
vector area).

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 81 of 102

Setting the stack size (“lnk740.xcl”)

Those that use a stack include a temporary area used in complicated calculations and a return
address. In the ICC740, stacks are classified as shown below, for the purpose of efficient
memory usage.

CSTACK
Stack.
Holds a hardware stack.

EXPR_STACK
Expression stack.
Temporarily holds a result while an expression is being evaluated in normal
processing.

INT_EXPR_STACK
Interrupt expression stack.
Temporarily holds a result while an expression is being evaluated in interrupt
processing.

RF_STACK
Recursive stack.
Stores a local variable and parameters for the enclosed call of a recursive function.

Assign the stack an appropriate size. An excessively small stack size may cause the system to
go wild, and an excessively large stack size may lead to a wasteful use of memory.
The following describes how to set the size of each stack: the expression stack, the interrupt
expression stack, and the C stack. These stacks must have their necessary sizes set in this link
command file “lnk740.xcl.”

* Segment name + YY: The segment is allocated in such a way that it will have the set memory
size (YYh bytes).

* To locate a C stack in page 0, alter the file description as shown below.
 -Z(ZPAGE) + 40
 40h bytes of space is allocated after INT_EXPR_STACK.
 *cstartup.s31 must also be altered.

-! Setup "EXPR_STACK" segment. This zero page located stack is used
 to hold temporary when evaluating complex expressions.
 It is set to 20(hex) below. -!

-Z(ZPAGE)EXPR_STACK+20

-! Setup "INT_EXPR_STACK" segment. This zero page located stack is used
 to hold temporary when evaluating complex expressions for interrupt
 routines written in C. It is set to 0 below.
 You must give this stack space if you have C written interrupts that
 need an expression stack. -!

-Z(ZPAGE)INT_EXPR_STACK+0

-! Setup "CSTACK" segment. This is the CPU stack. Note that this can
 either reside in page 0 or 1 -!

-Z(NPAGE)CSTACK+40=100

Set up an expression stack segment.
By default, its size is set to 20h.

Set up an interrupt expression stack segment. By
default, its size is set to 0h.
If expressions are to be evaluated in interrupt
processing, set the necessary size of this stack segment.

Set up a C stack segment. By default, its size is set
to 100h through 13Fh.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 82 of 102

Setting the beginning/ending addresses of the interrupt vector (“lnk740.xcl”)

Set the beginning/ending addresses of the interrupt vector. An example of how to set is shown
below.

Setting the beginning/ending addresses of the special page (“lnk740.xcl”)

Set the beginning/ending addresses of the special page. An example of how to set is shown
below.

-! Setup the "INTVEC" interrupt segment.
 If you are using the 37600 (chip group -v2) and the default cstartup
 reset vector, you must change the INTVEC line below to:
 -Z(CODE)INTVEC=FFC0-FFFF
 If you have a tiny chip derivative that does not have the interrupt
 vectors in page FF, you can change the page of the addresses below.
 CSTARTUP inserts the reset vector relative to INTVEC start which
 means that you can change the page without any problems:
 -Z(CODE)INTVEC=1FE0-1FFF
 -Z(CODE)C_FNT=1F00 -!

-Z(CODE)INTVEC=FFDC-FFFD

Set up an interrupt vector segment.
Specify an address range from the beginning of the
interrupt vector to the end of the reset vector.

-Z(CODE)C_FNT=FF00-FFDB
Set up a special page segment.
Specify the area for a function using the extended
statement tiny_func.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 83 of 102

Specifying a library (“lnk740.xcl”)

Specify a library. An example of how to specify is shown below.

* The library contains a default cstartup module. Unless the -C option is added, this default
module will be used.

* Type of library
 cI7400t: Tiny model
 cI7400I: Large model
 cI7401t: Tiny model for microcomputers without MUL/DIV
 cI7401I: Large model for microcomputers without MUL/DIV
 cI7402t: Tiny model for microcomputers with extended memory access
 cI7402I: Large model for microcomputers with extended memory access

-! This example files selects the default library which is
 tiny memory model and a 740 with MUL/DIV.
 This corresponds to option -mt and -v0 to the compiler.
 If you want to use another library, you can do it by
 removing the comments around it and adding comments around
 the default library. -!

-C cl7400l

-! -C cl7400t -! -! -v0 -mt -!
-! -C cl7400l -! -! -v0 -ml -!
-! -C cl7401t -! -! -v1 -mt -!
-! -C cl7401l -! -! -v1 -ml -!
-! -C cl7402t -! -! -v2 -mt -!
-! -C cl7402l -! -! -v2 -ml -!

Specify a library.
Select the necessary library and add the -C option
when specifying it.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 84 of 102

2.3 Extended Functions for Putting into the ROM

2.3.1 Variable Location
The accessible memory space of the 740 family microcomputers is 64 Kbytes at maximum. The ICC740
manages this memory space by dividing it into the “Z page area” at the addresses 0000h–00FFh and
the “N page area” at the addresses 0100h–FFFFh for management purposes.
This section describes how to locate variables and functions in these areas and how to access.

Z page area and N page area

The ICC740 manages up to 64 Kbytes of access space in two separate areas: the “Z page area”
and the “N page area.” The features of each area are summarized below.

Area name Content

Z page area
A space in which the 740 family microcomputers can access data efficiently at high
speed. It is a 256-byte area at the absolute addresses 0000h–00FFh, in which the stacks
and internal RAM are located.

N page area
A 65,280-byte area at the absolute addresses 0100h–FFFFh that the 740 family
microcomputers can access, in which the stacks, internal RAM, and internal ROM are
located.

Location of variables

Normally, RAM data is located by default in the N page area. The data which has had npage or
zpage specified during type declaration and the ROM data which has had the const qualifier
specified are located in the N page area.
This applies to both static and dynamic variables.

Locating variables in the zpage area

When zpage is specified during type declaration, RAM data is located in the Z page area.
This applies to both static and dynamic variables.

zpage int z_data ; Z page area z_data

npage int n_data ;
int data ;
const int c_data = 0x1234 ; N page area

0x1234

n_data

data

c_data

type specifier variable name;

zpage type specifier variable name;

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 85 of 102

Pointer variables

A pointer variable itself and its reference address both are located in the default area (N page
area). Also, it is possible to specify the default area (N page area) for the pointer variable itself
and the Z page area for the reference address.

Specifying zpage for pointer variables

By specifying zpage for a pointer, you can specify the size of the address to be stored in it and
the area in which the pointer itself is to be located.

(1) When you specify the area in which the pointer itself is to be located

The pointer itself is located in the specified area (Z page area), and the reference address is
located in the Z page area or the N page area depending on the data.

(2) When you specify the area in which the reference address is to be located
The reference address is located in the specified area (Z page area), and the pointer itself is
located in the default area (N page area).

However, because this statement will cause a warning
 Warning [w23]: Cannot represent pointer type

make sure that only the Z page area is referenced.

type specifier *zpage variable name;

int *zpage data2 ;

•

•

data2

*data2

*data2

Z page area

N page area

type specifier zpage *variable name;

int zpage *data3 ;
•

•

•

•

data3

*data3

Z page area

N page area

type specifier *variable name;

int *data1 ;
Z page area

N page area
data1

*data1

•

•

*data1

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 86 of 102

2.3.2 Handling of Bits
The ICC740 allows data to be handled in bit units. This is accomplished by using a bit variable in two
ways: one using extended feature, and the other using a union.
This section describes each method.

Bit variables

The following shows how to handle bits in the ICC740.

(1) When using the single bit variable “bit” of the extended language feature
The bit variable represents one bit in a Z page sfr variable.

Instructions using SEB and CLB are generated.
Be aware that this bit variable is different from the C standard bit field.

(2) When using a union

The union represents a bit type structure and a byte variable.
It can be used in both Z and N pages.

Instructions corresponding to Z and N pages respectively are generated.

sfr Port1 = 0x02 ; // Defines the address 0x02 of the SFR as “Port1” //
bit Port14 = Port1.4 ; // Defines the 4th bit of “Port1” as “Port14” //
bit Port15 = 0x02.5 ; // Defines the 5th bit at the address 0002h of the SFR as “Port15” //

typedef union{
 unsigned char byte ; // Used for byte access //
 struct{ // Used for bit access //
 char _0 : 1 ;
 char _1 : 1 ;
 char _2 : 1 ;
 char _3 : 1 ;
 char _4 : 1 ;
 char _5 : 1 ;
 char _6 : 1 ;
 char _7 : 1 ;
 }bitf ;
}bytestr ;

npage static bytestr pre_t_5msec ;

void main(void)
{

pre_t_5msec.bitf._0 = 1 ;
}

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 87 of 102

If it is desired to change the order in which bit-fields are stored, use the #pragma directive.
Because the order in which bit-fields are stored depends on the compiler, this method helps to
avoid the portability problems.

Restores the original bit-field storage sequence

Reverses the bit-field storage sequence

#pragma bitfields=default

#pragma bitfields=reversed

struct{
short a : 3 ;
short b : 2 ;
short c : 3 ;

}bit1 ;

#pragma bitfields=reversed

struct{
 short a : 3 ;
 short b : 2 ;
 short c : 3 ;
}bit2 ;

0

0

a:3

a:3

b:2

b:2

c:3

c:3

3 2

3 2

5 4

5 4

7

7

Column About the location of bit-fields

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 88 of 102

2.3.3 Control of the I/O Interface
To control I/O interfaces in an embedded system, specify absolute addresses for variables. There are
two methods to specify absolute addresses in the ICC740: one by defining the SFR area, and one by
using a pointer.
This section describes each method.

Defining the SFR area

Use the sfr variable of the extended language feature to set the SFR area. This SFR setting
should normally be prepared as a separate file, which can then be included in the source
program.
An example of a SFR area definition file is shown below.

SFR area definition file <io3803.h> <Source file>

Specifying an absolute address by a pointer

An absolute address can be specified by using a pointer. An example of how to specify is shown
below.

Example: Assign 0xEF to the address 000Ah

 :
sfr PRE12 = 0x00020 ;
sfr T1 = 0x00021 ;
sfr T2 = 0x00022 ;
sfr TM = 0x00023 ;
sfr PREX = 0x00024 ;
sfr TX = 0x00025 ;
sfr PREY = 0x00026 ;
sfr TY = 0x00027 ;
sfr TZL = 0x00028 ;
sfr TZH = 0x00029 ;
sfr TZM = 0x0002a ;
 :

Absolute
address
settings

#include "io3803.h"
:

void main(void)
{
 :
 TX = 0x94;
 TM.3 = 0 ;
 :
}

Loads the SFR area
definition file

References the SFR area
for byte access

References the SFR area
for bit access

char * point ;
point = (char *)0x000A ;
*point = 0xEF ;

* (char *)0x000A = 0xEF ;
When put together in one line=

EF

0A
00

Address 000Ah

point

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 89 of 102

2.3.4 Alternative Way when Unable to Write in C Language
Hardware related processing when “the processing time is insufficient” or “to control the C flag
directly” cannot always be written in C language. In such a case, the ICC740 allows assembly language
to be written directly into the C language source program (known as the “inline assemble feature). The
inline assemble feature can be accomplished using the “inline function” or the “asm function.”
This section describes each method.

Generating assembler instructions (inline function)

There are following seven inline functions:
break_instruction() : Generates the BRK instruction and then the NOP instruction
cld_instruction() : Generates the CLD instruction
disable_interrupt() : Generates the SEI instruction
enable_interrupt() : Generates the CLI instruction
enter_stop_mode() : Generates the STP instruction
enter_wait_mode() : Generates the WIT instruction
nop_instruction() : Generates the NOP instruction

An example of how to write is shown below.

* When using inline functions, be sure to include intr740.h. This header file exists in the inc
folder in the folder in which you installed the ICC740.

Writing only one line in assembly language (asm function)

When written as shown above, the string enclosed in double-quotes (“) is expanded into an
assembly language source program directly as is (including the space and tab).
Because this statement can be written in either the inside or outside of a function, it may prove
useful when the flags or registers need to be manipulated directly or high-speed processing is
desired. An example of how to write is shown below.

* To write __, enter two consecutive underscores (_).

__asm (“string”);

void main(void)
{
 :
 __asm(" LDA #0") ;
 :
}

#include <intr740.h>
void main(void)
{
 :
 enable_interrupt() ;
 :
}

Expanded
image

main:
 :

 CLI
 :
 RTS

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 90 of 102

2.4 Linkage with Assembly Language

2.4.1 Interfacing between Functions
Assembly language subroutines can be called from a C language program. Use this interface to call
assembly language from C language.
This section describes interfacing between functions in the ICC740.

Entry and exit processing of functions

The primary processing needed to call a function in the ICC740 consists of the following two:
(1) Argument transfer to and from function
(2) Return value transfer to and from function

int func(int, int) ; int func(int x, int y)
 {
void main(void) :
{ }
 int a = 3, b = 5 ;
 int c ;
 :
 c = func(a, b) ;
 :
}

Preparation to pass arguments

JSR np:REFFN

Receiving return value

Global declaration of label

func:

Receiving arguments

•

•

•

Storing return value

RTS

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 91 of 102

Rules for passing arguments

The ICC740 uses different places in which to store arguments depending on the data types of
arguments. The following shows how arguments are passed to a function.

Type of argument Passed via

char type Accumulator *
Other types C_ARGN or C_ARGZ

* For the first argument only

Rules for passing return values

The ICC740 uses different places in which to store return values depending on the data types of
return values. The following shows how return values are passed to a function.

Data type Returned via

char type Accumulator *
Other types EXPR_STACK

Types of stacks

The ICC740 stores the arguments and return address passed to when calling a function in the
segments shown below. Therefore, the ICC740 does not construct a stack frame.

 Segment

Argument
C_ARGN (other than zero page)
C_ARGZ (zero page)

Return address CSTACK

Rules for converting function symbols into assembly language

The ICC740 uses the same method to convert symbols irrespective of the properties of functions.
The symbol conversion rule is shown below

Function name Assembler symbol name

Example func()
Function name:
Example func:

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 92 of 102

Interface keywords

To declare the functions in an assembly language program to be called from a C language
program, use the assembler interface keyword “DEFFN.” For the functions in an assembly
language program to be referenced from a C language program, you need to declare the names
of those functions with “PUBLIC.” Then, in the C language program, declare those functions
names as “EXTERN.”

a: auto variable size in zero page of the function to be set in the C_ARGZ segment
b: auto variable size in other than zero page of the function to be set in the C_ARGN segment
x: Argument size in zero page of the function to be set in the C_ARGZ segment
y: Argument size in other than zero page of the function to be set in the C_ARGN segment

An example of how to write a program is shown below.

* The arguments a, b, x, and y must be 0 because the assembler functions do not have
arguments.

* The keyword DEFFN is needed by the linker to calculate the sizes of the segments C_ARGZ
and C_ARGN.

DEFFN function name (a, 0, b, 0, 0x8000+x, 0, y, 0)

extern void sub(void) ;
void func(void)
{
 sub() ;
}

a.c

 DEFFN sub(0, 0, 0, 0, 0x8000, 0, 0, 0)
 PUBLIC sub
 RSEG P:CODE
sub:
 • • •
 RTS

Save/restore
register X and flag

b.s31

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 93 of 102

2.4.2 Calling Assembly Language from C Language
This section describes how to write a program to call assembly language subroutines as C language
functions.

Calling assembly language subroutines

To call assembly language subroutines (assembly language functions) from a C language
program, follow the rules described below.

(1) Write the subroutine in a separate file from the C language program.
(2) For the subroutine name, follow the symbol conversion rules.
(3) In the C language program from which to call, declare the prototype of the subroutine

(assembly language function). At this time, use the storage-class specifier “extern” to declare
the subroutine as externally referenced.

(4) In the subroutine (assembly language function), do not normally alter the X register and flag
values that are used exclusively by the ICC740. If the X register or flag value needs to be
altered, save the value to the stack on entry to the function and restore it from the stack on
exit from the function.

Declare the prototype of the
assembly language function to
be called

<C language>

Set relocatable assembly mode
(RSEG)

<Assembly language>

Declare the initial label symbol of
the function as global

(PUBLIC)
(DEFFN)

asm_func:

Save X register and flags

Processing on entry to the function

Actual processing

Set return value

Restore X register and flags

Processing on exit from the function

RTS

JSR np:REFFN
asm_func

extern void asm_func(void) ;
void func(void)
{
 asm_func () ;
}

 DEFFN asm_func (0, 0, 0, 0, 0x8000, 0, 0, 0)
 PUBLIC asm_func
 RSEG P:CODE
asm_func:
 • • •

 RTS

: Must always be written.

: To be written as necessary.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 94 of 102

Example for calling a subroutine

The following shows a sample program that indicates the result of a count-up operation on
LEDs. Create the LED display part in assembly language and the count-up part in C language,
and then link.

<Count-up part>

void led(void) ;
sfr P7 = 0x40 ;
extern char counter ;

void main(void)
{
 if(counter < 9){
 counter++ ;
 } else {
 counter = 0 ;
 }

 led() ;
}

PUBLIC counter
PUBLIC led
DEFFN led(0, 0, 0, 0, 32768, 0, 0, 0)

RSEG CODE
led:
 LDY np:counter
 LDA np:table, Y
 STA zp:64
 RTS

RSEG CONST
table:
 BYTE 0xC0

<LED display part>

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 95 of 102

2.5 Interrupt Handling
The ICC740 allows interrupt handling to be written as C language functions. The procedure consists of
the following four steps:

(1) Writing the interrupt handling function
(2) Setting the interrupt disable flag (I flag)

Do this by using an inline function.
(3) Registering to the interrupt vector area
(4) Setting up the interrupt vector segment

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 96 of 102

2.5.1 Example for Writing Interrupt Handling Functions
This section shows an example for writing a program that clears the content of the “counter” to 0 each
time an INT0 interrupt (rising edge) occurs in the 3803 group and counts up the content of the “counter”
each time an INT2 interrupt (falling edge) occurs.

Example for writing interrupt handling functions

An example of how to write the source file is shown below.

#include <intr740.h> /* Header file for inline function */
#include "io3803.h" /* SFR header file for the 3803 group */

unsigned char counter ;

interrupt void Int0(void) /* Interrupt handling function */
{
 cld_instruction() ; /* CLD instruction to initialize decimal mode flag */
 counter = 0 ;
}

interrupt void Int2(void) /* Interrupt handling function */
{
 cld_instruction() ; /* CLD instruction to initialize decimal mode flag */
 if(counter < 9){
 counter++ ;
 } else {
 counter = 0 ;
 }
}

void main(void)
{
 /* (1) Set the corresponding interrupt enable bit to 0 (disabled) */
 ICON1.0 = 0 ; /* INT0 interrupt enable bit → Disabled */
 ICON2.3 = 0 ; /* INT2 interrupt enable bit → Disabled */

 /* (2) Set the interrupt edge select bit and interrupt source bit */
 INTEDGE.0 = 1 ; /* INT0 asserted by a rising edge */
 INTEDGE.3 = 0 ; /* INT2 asserted by a falling edge */
 INTSEL.0 = 0 ; /* Interrupt source → INT0 interrupt */

 /* (3) Past one or more instructions, set the corresponding interrupt request bit to 0 (not

requested) */
 nop_instruction() ; /* Insert one instruction */
 IREQ1.0 = 0 ; /* INT0 interrupt request bit → Not requested */
 IREQ2.3 = 0 ; /* INT2 interrupt request bit → Not requested */

 /* (4) Set the corresponding interrupt enable bit to 1 (enabled) */
 ICON1.0 = 1 ; /* INT0 interrupt enable bit → Enabled */

ICON2.3 = 1 ; /* INT2 interrupt enable bit → Enabled */

 enable_interrupt() ; /* CLI instruction to enable interrupt */

 while(1) ; /* Interrupt wait loop */
}

Defined in “io3803.h”
sfr INTSEL = 0x00039;
sfr INTEDGE = 0x0003a;
sfr IREQ1 = 0x0003c;
sfr IREQ2 = 0x0003d;
sfr ICON1 = 0x0003e;
sfr ICON2 = 0x0003f;

ICON1.0 denotes bit 0 of SFR
ICON1.

If none of the decimal mode
flags are used in the program,
they do not need to be
initialized in the interrupt
handling function.

Processor Status Register
(Automatically saved to the stack during
interrupt)
• D and T flags

Initialized by init_C in cstartup.s31.
• I flag

Set to 1 (disabled) immediately after
the microcomputer is reset.

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 97 of 102

2.5.2 Writing Interrupt Handling Functions
The ICC740 allows interrupt handling functions to be written in C or assembly language.
This section describes the basic method for writing interrupt handling functions in C language.

Basic method for writing interrupt handling functions (C language)

Use the extended keyword interrupt to define interrupt handling functions. An example of how to
write and an expanded image are shown below.

When written as shown above, the program saves and restores the 740 family registers and
generates the RTI instruction, in addition to ordinary function procedures on entry and exit to
and from the function. Note that the number of registers to be saved and restored varies
depending on the content of the interrupt handling function concerned.

* The valid types of interrupt handling functions are only the void type, for both arguments and

return values. All other types, if any declared, result in an error when compiled.

interrupt void intr(void)
{
 ...
 /* Interrupt handling */
 ...
}

 RSEG CODE
intr:
 PHA
 ...
 ; Interrupt handling
 ...
 PLA
 RTI

Expanded
image

For both arguments and return values,
only void type is effective.

Save registers

Restore registers

Return by RTI instruction

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 98 of 102

2.5.3 Setting the Interrupt Disable Flag (I Flag)

Setting the interrupt disable flag (I flag)

For interrupts to be generated, the interrupt disable flag (I flag) must be cleared to 0 (enabled).
The ICC740 allows the I flag to be set by an inline function. To use inline functions, make sure
“intr740.h” is included.

In the above example, enable_interrupt() and disable_interrupt() are replaced with the CLI
instruction to clear the I flag to 0 and the SEI instruction to set the I flag to 1, respectively.

#include <intr740.h>

void main(void)
{
 enable_interrupt() ;
 while(1) ;
 disable_interrupt() ;
}

main:
 CLI
?0003:
 BRA ?0003
 SEI
 RTS

Expanded
image

enable_interrupt()

disable_interrupt()

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 99 of 102

2.5.4 Registering to the Interrupt Vector Area
For interrupts to be used, it is necessary to write interrupt handling functions, as well as register the
written interrupt handling functions in the interrupt vector area.
This section describes how to register the interrupt handling functions.

Registering interrupt handling functions

By altering the content of the INTVEC segment in the cstartup.s31 included with the ICC740,
register the interrupt processing functions as suitable for the microcomputer used. For this
purpose, rewrite the lines 352–372 as shown below.

The reset vector is set at the bottom. When the microcomputer is reset, the program starts from
init_C that is registered in the reset vector. In this example, init_C is registered in the interrupt
vectors for unused interrupts, the same way as for reset. There is no need to add a reset. The
above WORD init_C line must be written as matched to the number of interrupt sources
accommodated by the microcomputer used. init_C exists in the 134th line of cstartup.s31.

To register interrupt handling functions, follow the procedure described below.

(1) Declare the interrupt processing function to be externally referenced by using the
directive command EXTERN.

(2) Register it to the interrupt vector.

 COMMON INTVEC

?CSTARTUP_INTVEC:
 BLKB 0FFFEH - 0FFDCH -2 ; 3803 Group
#if 0
#if defined(MELPS_37600)
 BLKB 40H - 6 ; FFFA (FFC0 + 40 - 6) (-v2)
#elif defined(MELPS_MULDIV)
 BLKB 20H - 4 ; FFFC
#else
 BLKB 20H - 2 ; FFFE
#endif
#endif
?CSTARTUP_RESETVEC:
 WORD init_C

ENDMOD init_C

 EXTERN Int2, Timer1, Int0
 COMMON INTVEC

?CSTARTUP_INTVEC:
 WORD init_C ; +0x00 : BRK
 WORD init_C ; +0x02 : AD_SIO3T
 WORD init_C ; +0x04 : INT4_CNTR2
 WORD init_C ; +0x06 : INT3
 WORD Int2 ; +0x08 : INT2
 WORD init_C ; +0x0a : SIO2_TimerZ
 WORD init_C ; +0x0c : CNTR1_SIO3R
 WORD init_C ; +0x0e : CNTR0
 WORD init_C ; +0x10 : Timer2
 WORD Timer1 ; +0x12 : Timer1
 WORD init_C ; +0x14 : TimerY
 WORD init_C ; +0x16 : TimerX
 WORD init_C ; +0x18 : SIO1T
 WORD init_C ; +0x1a : SIO1R
 WORD init_C ; +0x1c : INT1
 WORD Int0 ; +0x1e : INT0_TimerZ
?CSTARTUP_RESETVEC:
 WORD init_C ; +0x20 : reset
 ENDMOD init_C

Example for
the 3803
group
(varies with
each
microcompu
ter used)

Register the function Int2() for
the INT2 interrupt

Register the function Timer1()
for the timer 1 interrupt

Register the function Int0()
for the INT0 interrupt

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 100 of 102

2.5.5 Setting Up the Interrupt Vector Segment

Setting up the interrupt vector segment

To set up the interrupt vector segment, set the addresses given below in the interrupt vector
segment “INTVEC” of the link command file “lnk740.xcl.”

* Make sure the beginning and ending addresses of the interrupt vector area you set here suit
the microcomputer used.

-Z(CODE)INTVEC=FFDC-FFFD

Beginning and ending addresses of the interrupt vector area

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 101 of 102

REVISION HISTORY
740 family Programming Guide <C Language>

 Application Note

Description Rev. Date
Page Summary

1.00 Sep 15, 2004 − First edition issued

740 Family
Programming Guide <C Language>

 REJ05B0468-0100Z /Rev.1.00 September 2004 Page 102 of 102

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Preface
	Guide to Using This Application Note
	Table of Contents
	Chapter 1

Introduction to C Language
	1.1 Programming in C Language
	1.1.1 Assembly Language and C Language
	1.1.2 Program Development Procedure
	1.1.3 Easily Understandable Program

	1.2 Data Types
	1.2.1 "Constants" in C Language
	1.2.2 Variables
	1.2.3 Data Characteristics

	1.3 Operators
	1.3.1 Operators of ICC740
	1.3.2 Operators for Numeric Calculations
	1.3.3 Operators for Processing Data
	1.3.4 Operators for Examining Condition
	1.3.5 Other Operators
	1.3.6 Priorities of Operators
	1.3.7 Examples for Easily Mistaken Use of Operators

	1.4 Control Statements
	1.4.1 Structuring of Program
	1.4.2 Branching Processing Depending on Condition (Branch Processing)
	1.4.3 Repetition of Same Processing (Repeat Processing)
	1.4.4 Suspending Processing

	1.5 Functions
	1.5.1 Functions and Subroutines
	1.5.2 Creating Functions
	1.5.3 Exchanging Data between Functions

	1.6 Storage Classes
	1.6.1 Effective Range of Variables and Functions
	1.6.2 Storage Classes of Variables
	1.6.3 Storage Classes of Functions

	1.7 Arrays and Pointers
	1.7.1 Arrays
	1.7.2 Creating an Array
	1.7.3 Pointers
	1.7.4 Using Pointers
	1.7.5 Placing Pointers into an Array
	1.7.6 Table Jump Using Function Pointer

	1.8 Struct and Union
	1.8.1 Struct and Union
	1.8.2 Creating New Data Types

	1.9 Preprocess Commands
	1.9.1 Preprocess Commands of ICC740
	1.9.2 Including a File
	1.9.3 Macro Definition
	1.9.4 Conditional Compile

	Chapter 2

Downloading a Program into the ROM
	2.1 Memory Allocation
	2.1.1 Types of Codes and Data
	2.1.2 Segments Managed by the ICC740
	2.1.3 Controlling Memory Allocation

	2.2 Initialization Setup Files
	2.2.1 Roles of the Initialization Setup Files
	2.2.2 Startup Program
	2.2.3 Link Command File

	2.3 Extended Functions for Putting into the ROM
	2.3.1 Variable Location
	2.3.2 Handling of Bits
	2.3.3 Control of the I/O Interface
	2.3.4 Alternative Way when Unable to Write in C Language

	2.4 Linkage with Assembly Language
	2.4.1 Interfacing between Functions
	2.4.2 Calling Assembly Language from C Language

	2.5 Interrupt Handling
	2.5.1 Example for Writing Interrupt Handling Functions
	2.5.2 Writing Interrupt Handling Functions
	2.5.3 Setting the Interrupt Disable Flag (I Flag)
	2.5.4 Registering to the Interrupt Vector Area
	2.5.5 Setting Up the Interrupt Vector Segment

	REVISION HISTORY
	Keep safety first in your circuit designs!
	Notes regarding these materials

