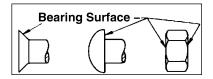


### **ALLOWANCE**

The prescribed difference between the design size (maximum material) and the basic size.

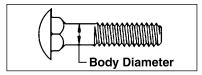
### **BASIC PROFILE**


The cyclical outline, in an axial plane, of the permanently established boundary between the provinces of the external and internal threads. All deviations are with respect to this boundary.

### **BASIC SIZE**

That size from which the limits of size are derived by the application of allowances and tolerances.

### **BEARING SURFACE**


The bearing surface is the supporting or locating surface of a fastener



with respect to the part which it fastens (mates). The loading of a fastener is usually through the bearing surface.

### **BODY DIAMETER**

The body diameter is the diameter of the body of a threaded fastener.



### **CHAMFER**

The conical surface at the starting end of a thread.

### **CHAMFER POINT**

A chamfer point is a truncated cone point, the end of which is



approximately flat and perpendicular to the fastener axis. These points on threaded fasteners generally have point included angles of 45 to 90 degrees and a point diameter equal to or slightly less than the minor diameter of the thread. This point is intended to facilitate entry of fasteners into holes at assembly.

### **CLASS OF THREAD**

An alphanumerical designation to indicate the standard grade of tolerance and allowance specified for a thread.

### Class 1A and 1B

Classes 1A and 1B are very loosely toleranced, therefore, this class produces the loosest fit; that is, the greatest amount of play in assembly. An allowance is applied to the external thread in class 1A and 1B. This class is ideally suited where quick and easy assembly is of prime design concern.

Class 1A and 1B is standard for only coarse and fine threads with sizes of 1/4 inch and larger. Very few fasteners produced in Canada and the United States have this class of fit.

### Class 2A and 2B

Class 2A and 2B is the most common thread class specified for inch series fasteners. Class 2A for external threads has an allowance while class 2B for internal threads does not. Class 2A and 2B threads offer excellent value of fit when considering manufacturing conveniences and economy, against fastener performance. This class offers a good grade of

commercial products such as machine screws, bolts, nuts, and studs for most interchangeable equipment parts and structural applications. It is estimated that over 90 percent of inch fastener series in Canada and the United States have class 2A and 2B threads.

### Class 3A and 3B

Class 3A and 3B threads have no specific allowance and are manufactured to restrictive tolerances. These classes of threads are intended for exceptionally high-grade commercial products such as socket cap screws, set screws, aerospace bolts and nuts, and connecting rod bolts where close or snug fit for precision is essential, as well as in applications where safety is a critical design feature.

### **CLEARANCE FIT**

The maximum material condition clearance between mating assembled parts.

### **COLD WORKING**

Cold working is the plastic deformation of metals at temperatures below that which will cause recrystallization. This cold working is accompanied by an increase in strength and hardness, called work hardening, and a decrease in ductility. The cold working effects of forming bolt and screw heads, of extruding bolt shanks, and of roll threading increase strength values, often considerably.

### **CONE POINT**

A cone point is a sharp conical point designed to perform perforating or align-



ing functions at assembly.

### COUNTERSINK

Flare or bevel at the hole end.

### **ELEMENT**

Elements of a thread are flank angle, root, crest, pitch, lead angle, surface finish, major, minor, and pitch diameters.

### **EXTERNAL THREAD**

A screw thread formed on the outside of a cylindrical surface.

### **FASTENER**

A fastener is a mechanical devise for holding two or more bodies in definite positions with respect to each other.

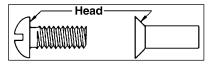
### FULL OR NOMINAL DIAMETER BODY

A full or nominal diameter body is a body the diameter of which is generally within the dimensional limits of the major diameter of the thread. Sometimes referred to as "full size body".

### **GIMLET POINT**

A gimlet point is a threaded cone point usually having a point angle of




45 to 50 degrees. It is used on thread forming screws such as Type "AB" tapping screws, wood screws, lag screws, etc.

### **GRADES OF FASTENERS**

In the SAE system, grades are designated by numbers from 1 through 8. These numbers have no quantitative relationship to strength properties, except that increasing numbers represent increasing tensile strengths. Decimals after whole numbers indicate the same basic properties, with variations in either material or processing treatment. The ASTM grades are designated by their document number. Some of the ASTM standards describe two or more types or grades with the difference being either a variation of material – for example, ASTM A325 Types 1, 2 and 3 – or modified properties of the same material – ASTM A307 Grades A and B.

### **HEAD**

The head of a fastener is the enlarged shape preformed on one end of a



headed fastener to provide a bearing surface.

### HIGH STRENGTH FASTENER

A high strength fastener is a fastener having high tensile and shear strengths attained through combinations of materials, work-hardening and heat treatment.

### **HEAT TREATMENT**

The strength and ductility of metals can be significantly altered by various types of heating operations. Heat treatment refers to any of a number of operations involving the heating of the parts in appropriate furnaces, gas fired or electric, often with controlled atmosphere, and the subsequent cooling at controlled rates. In the manufacture of fasteners the strength and ductility of the parts can in this way be adjusted, within limits, to fit the particular application.

### **INCOMPLETE THREAD**

Threads having crests or roots not fully formed. Incomplete threads occur at the end of pointed externally threaded products, at countersinks in the faces of threaded holes or nuts, and at thread runouts where the threaded section blends into the unthreaded shank.

### **THREAD**

A thread is a portion of a screw thread encompassed by one pitch. On a single-start thread it is equal to one turn. See threads per inch and turns per inch.

### **MAJOR CYLINDER**

An imaginary cylinder that would bound the crests of an external straight thread or the roots of an internal straight thread.

### **MAJOR DIAMETER**

On an internal thread, the diameter at the root and on an external thread the major diameter is the diameter at the thread crest.

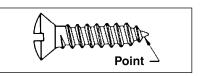
### MINOR DIAMETER

On an internal thread, the diameter at the crests and on an external thread, the diameter at the root.

### **NOMINAL SIZE**

The designation which is used for the purpose of general identification. The basic major diameter of a threaded fastener is often referred to as "nominal size".

### PHYSICAL PROPERTIES


Physical properties are the properties defining the basic characteristics of the material or fastener.

### **PITCH**

The pitch of a thread having uniform spacing is the distance, measured parallel to its axis, between corresponding points on adjacent thread forms in the same axial plane and on the same side of the axis. Pitch is equal to the lead divided by the number of thread starts.

### **POINT**

The point of a fastener is the configuration of the end of the shank of a



headed fastener or of each end of a headless fastener.

### **PROOF LOAD**

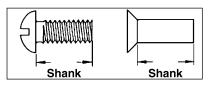
Proof load represents the maximum useable load limit of the fastener for many design-service applications. Proof load is commonly defined as the tension applied load which the fastener must support without evidence of any deformation. Often, proof load and yield strength are interpreted as being the same.

**Note:** Proof load is a force measurement. The units are pounds or newton. Yield strength is a stress measurement. The units are PSI or MPa. The stress at the proof load is 90-93% of the yield strength.

### REFERENCE DIMENSION

A dimension usually without tolerance, used for information purposes only. It does not govern production or inspection operations. A reference dimension is derived from other values shown on the drawing or on related drawings.

### **RIGHT-HAND THREAD**

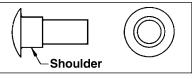

A thread is right-hand if, when viewed end-on, it winds in a clockwise and receding direction. A thread is considered to be right-hand unless specifically indicated.

### **ROOT**

That surface of the thread that joins the flanks of adjacent thread forms and is immediately adjacent to the cylinder from which the thread projects.

### **SHANK**

The shank is that portion of a headed fastener which lies between the head and the extreme point.




### SHEAR STRENGTH

Shear is transverse rupture. It is caused by a pushing or pulling force at 90° from the axis of a part. Thus, a rivet used as a pulley axle will shear if the load on the pulley exceeds the shear value of the rivet. Shear strengths generally are 60% of the specified minimum tensile strength.

### **SHOULDER**

A shoulder is an enlarged portion of the body of a threaded fas-



tener or shank of an unthreaded fastener.



### **TENSILE STRENGTH**

Tensile strength, or ultimate strength, is that property of a material which determines how much load it can withstand without breaking. It is calculated by determining the tensile stress corresponding to the maximum load observed in a tension test. Cold working raises the tensile strength of most metals and alloys. Heat treatment can often be used to increase or reduce the tensile strength.

### THREADED FASTENER

A threaded fastener is a fastener – a portion of which has some form of screw thread.

### THREAD PITCH

The distance measured parallel to the thread axis between corresponding points on adjacent threads. Pitch is equal to the lead divided by the number of thread starts. Unified threads are designated in threads per inch and their thread pitch is reciprocal of the number of threads per inch (TPI). Metric threads are designated by their actual pitch.

### THREAD SERIES

Thread series are groups of diameter-pitch combinations distinguished from each other by the number of threads per inch applied to a series of specific diameters. There are two general series classifications: standard and special.

### **Coarse Thread Series Applications**

The coarse thread series (UNC/UNRC) is generally used for the bulk production of screws, bolts, and nuts. It is commonly used in relatively low strength materials such as cast iron, aluminum, magnesium, brass, bronze, and plastic because the coarse series threads provide more resistance to internal thread stripping than the fine or extra-fine series. Coarse series threads are advantageous where rapid assembly or disassembly is required, or if corrosion or damage from nicks due to handling or use is likely.

### Fine Thread Series Applications.

The fine thread series (UNF/UNRF) is commonly used for bolts and nuts in high strength applications. This series has less thread depth and a larger minor diameter than coarse series threads. Consequently, thinner walls are permitted for internal threads and more strength is available to external threads than for coarse series threads of the same nominal size.

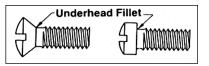
### 8-Thread Series.

The 8-thread series (8UN) is a uniform-pitch series for large diameters or as a compromise between coarse and fine thread series. Although originally intended for high-pressure-joint bolts and nuts, it is now widely used as a substitute for the coarse thread series for diameters larger than 1 in.

### 12-Thread Series

The 12-thread series (12UN) is a uniform-pitch series for large diameters requiring threads of medium-fine pitch. Although originally intended for boiler practice, it is now used as a continuation of the fine thread series for diameters larger than 1-1/2 in.

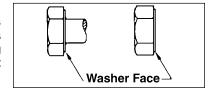
### THREADS PER INCH


The number of thread pitches per inch. It is the reciprocal of the axial pitch value in inches.

### **TOLERANCE**

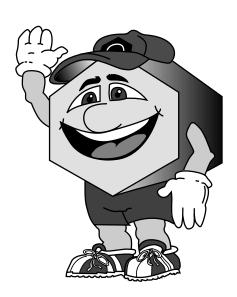
The total amount of variation permitted for the size of a dimension. It is the difference between the maximum limit of size and the minimum limit of size.

### **UNDERHEAD FILLET**


An underhead fillet is the fillet at the junction of the head and



shank of a headed fastener.


### **WASHER FACE**

A washer face is a circular boss on the bearing surface of a bolt or nut.



### **YIELD STRENGTH**

Yield strength is defined as the tension applied stress at which the fastener experiences a specified amount of permanent deformation. The fastener material simply has been stressed beyond its elastic limit and has entered its plastic zone. Yield strengths of machined test specimens are easily determined because of their uniform cross-sectional area throughout the stressed length. It has been noted that the yield strength characteristics of test specimens do not always parallel those of the full size fastener from which they are taken. This is because the beneficial effects of cold working may be completely lost when the test piece is machined from the parent product. It is difficult to test full size fasteners for yield strength because of the different strain rates in areas such as: the fully threaded portion; the thread runout; and the unthreaded shank which comprises the stressed length. Because of this, the "proof load" system was introduced as an approved technique for testing a fastener's deformation characteristics.



### **STEEL FASTENERS**

### **CARBON STEEL FASTENERS**

Approximately 90 percent of all fasteners are manufactured from carbon steel. Steel has excellent workability, a broad range of strength properties, and the raw material is quite inexpensive. There are over 100 different standard strength grades for steel fasteners, each with its own set of properties and designations.

In general, carbon steel fastener strength grades can be placed into three broad groupings involving low carbon, medium carbon, and alloy steel, The most widely referenced strength grade for carbon steel external threaded fasteners is detailed in the SAE J429 standard. The system is comprised of bolt grades made from low carbon steel through to alloy steels.

The common grades of the SAE system are repeated and expanded upon in separate ASTM standards, notably A307, A449, A325 and A490.

### **LOW CARBON STEELS**

Low carbon steels, as used for fasteners, are defined as those with insufficient carbon content to permit a predictable response to a strengthening heat treatment process. The most commonly used analysis are AISI 1006, 1008, 1016, 1018, 1021 and 1022. These steels have good workability, they can be case hardened, and are weldable.

**Note:** (Piping Bolt) The low carbon steel fastener ASTM A307 is a special bolt used in piping and flange work. It has properties similar to other low carbon steel bolts except that it has the added requirement of a specified maximum tensile strength. The reason for this is to ensure that the bolt will fracture, before breaking a cast iron flange on a pump or valve, if the bolt is inadvertently over-tightened.

### **MEDIUM CARBON STEELS**

Medium carbon steels are heat treatable, which means that through metallurgical treatments the tensile strength of the fastener after processing can be significantly higher than that of its original raw material. Popular analysis are AISI 1030, 1035, 1038 and 1541. On a strength-to-cost basis, medium carbon heat treated steel fasteners provide more load carrying capability per unit of cost than any other known metal. Their yield-to-tensile ratio is the lowest of all heat treated steels which gives them superior ductility. In fact, they are frequently referred to as "forgiving" which means they have a punching bag ability to absorb punishment and service abuse.

### **ALLOY STEELS**

Carbon steel is classed as an alloy steel when the maximum of the range of content specified for manganese is greater than 1.65 percent, or for silicon 0.60 percent, or for copper 0.60 percent, or when the chromium content is less than 4.0 percent (if greater it approaches being a stainless steel), or when the steel contains a specified minimum content of aluminum, boron, cobalt, columbium, molybdenum, nickel, titanium, vanadium, zirconium, or any other element added to achieve a specific effect.

### ALLOY STEEL STUD BOLTING MATERIALS

The following grades of heat treated alloy steel studs are commonly used for high-pressure or extreme service in diameters of 1/4 in. to 4 in., inclusive. Other grades and other diameters are available on special order.

### ASTM A193. Grade B7

A heat treated chromium-molybdenum steel widely used for medium high temperature service. (Liquid quench -50° to 900°F, Air quench -40° to 900°F)

### ASTM A193, Grade B7M

Similar to B7 studs except that the minimum yield and tensile strength requirements are reduced and the hardness controlled to 235 Brinell maximum. Designed for use in corrosive environments. (-50° to 900°F.)

### ASTM A193, Grade B16

A heat treated chromium-molybdenum, vanadium steel for high pressure, high temperature service. (-50° to 1100°F.)

### ASTM A320, Grade L7

This grade is intended for low temperature service down to minus 150°F and has a minimum Charpy impact value of 20 ft. lbs. at this temperature. (-150° to 1100°F.)

### ASTM A320, Grade L7M

Similar to L7 studs except that the minimum yield and tensile strength requirements are reduced and the hardness controlled to 235 Brinell maximum. This stud is designed for use in low temperature corrosive environments. (-150° to 1100°F.)

### ASTM A193, Grade B8

These Chromium-Nickel (AISI 304) austenitic steel studs are used in corrosive environments. (-325° to 1500°F.)

### ASTM A193, Grade B8M

These Chromium-Nickel Molybdenum (AISI 316) austenitic steel studs are used in corrosive environments. (-325° to 1500°F.)

### **CARBON AND ALLOY STEEL NUTS**

### ASTM A194, Latest Revision, Grade 2H

Suitable for use in high temperatures and high pressure conditions.

### ASTM A194, Grade 2HM

Similar to 2H nuts except this grade is designed for use in corrosive environments.

### ASTM A194, Latest Revision, Grade 4

Heat treated molybdenum steel nuts suitable for severe temperature and pressure conditions.

### ASTM A194, Latest Revision, Grade L7

New stamping as per ASTM is 7L. Heat treated chromemolybdenum steel nuts suitable for extreme temperature and pressure conditions. Suitable for sub-zero service conditions and have minimum Charpy impact values of ASTM spec. A320. Grade 7 down to -150°F.

### ASTM A194, Grade L7M

New stamping as per ASTM is **7ML**. Similar to grade L7 nuts except this grade is designed for use in corrosive environments.

### ASTM A194, Grade 8/8M

Stainless steel nuts designed for use in corrosive environments.



### WHY IS STAINLESS STAINLESS?

Stainless steels achieve "stainless" characteristics by virtue of their ability to form a tight adherent film of iron-chromium oxide which strongly resists attack by the atmosphere and a wide variety of industrial gases and chemicals. This effect, plus the superior high temperature strength characteristics exhibited by many of these alloys, accounts for their wide use at ordinary and elevated temperatures with a wide choice of mechanical properties and several distinct levels of corrosion resistance.

### These steels may be subdivided into the following groups:

- Martensitic stainless steels are iron-chromium alloys which are hardenable by heat treatment. Representative of this group are Types 410, 420, 431 and 440C.
- 2. Ferritic stainless steels are iron-chromium alloys which cannot be hardened significantly by heat treatment. Representative of this group are Types 405 and 430.
- Austenitic stainless steels are iron-chromium-nickel and iron-chromium-manganese-nickel alloys which are hardenable by cold working. Representative of this group are Types 201, 304, and 316.
- 4. Precipitation hardening stainless steels are iron-chromiumnickel alloys with additional elements which are hardenable by solution treating and aging.

Alloys in the first two groups are magnetic in all conditions; those in the third group are slightly magnetic in the cold worked condition, but non-magnetic in the annealed condition in which they are most often used. Alloys in the fourth group are magnetic in the precipitation hardened condition.

**NOTE**: The Fastener Industry is now involved in the process of changing the head markings on stainless steel bolts to correspond to the ASTM specification. Please refer to the chart at the bottom of the page.

# **QUOTE**

There are few, if any, jobs in which ability alone is sufficient. Needed, also, are loyalty, sincerity, enthusiasm and team play.

WILLIAM B. GIVEN, JR.

### **MATERIALS AVAILABLE**

### 18.8 Stainless Steel

This is the most popular type of stainless used in the production of fasteners. Its composition is approximately 18% Chromium and 8% Nickel, thus the name 18.8. Several grades of stainless are included in this classification including 302, 303, 304 and 305. These all have good strength and corrosion resistance.

### 316 Stainless Steel

This is more corrosion resistant than 18.8, but also more expensive. It is composed of approximately 18% Chromium and 12% Nickel with the addition of 2% to 4% Molybdenum. It also maintains its strength at higher temperatures than 18.8.

### 410 Stainless Steel

It has approximately 12% Chromium with no Nickel. It is not very corrosion resistant and is magnetic, but it can be heat treated to become harder.

### Alloy 20

This alloy has approximately 20% Chromium and 34% Nickel plus 3% to 4% Molybdenum. It is very corrosion resistant and is especially popular when in contact with sulfuric acid

### **Brass**

This metal is approximately 65% Copper and 35% Zinc. It offers a good combination of strength, corrosion resistance and workability.

### Nickel Copper 400

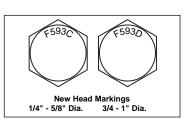
This alloy is approximately 70% Nickel and 30% Copper. It has excellent strength and corrosion resistance and is used in salt water marine and other chemical environments.

### **Titanium**

This has a very high strength to weight ratio, as well as good corrosion resistance.

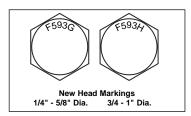
### Inconel

Registered Trade Mark of Inco Ltd. Composed of approximately 77% Nickel and 15% Chromium. It offers superior strength and good corrosion at high temperatures.


### Silicon Bronze

It is composed of approximately 96% Copper, 3% Silicon and 1% Manganese. It is more corrosion resistant and tougher than brass. It is widely used in the electrical industry.

### **EXAMPLES OF HEAD MARKING CHANGES**


## 18.8 STAINLESS STEEL HEX HEAD CAP SCREWS UNC – Unified National Coarse Thread





## 316 STAINLESS STEEL HEX HEAD CAP SCREWS UNC – Unified National Coarse Thread







| _                  |                  |                   |             | Max.          | Max.                  |                   | Max.                     |                | Other                                       |                                                             |                                                     | Approx.            |
|--------------------|------------------|-------------------|-------------|---------------|-----------------------|-------------------|--------------------------|----------------|---------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|--------------------|
| Chromium           |                  |                   | Mangan.     |               | Sulphur               |                   | Silicon                  | Copper         | Elements                                    | Tensile                                                     | Yield                                               | Hardnes            |
| OO SERIES          | AUSTENIII        | ot higher         | temperatu   | unts for 86°  | %-90% 01<br>danahla h | stainless i       | asteners; b<br>tment Ten | est corros     | ion resistance of s<br>ald will increase sh | tainless alloys; non-magnetionarply in austenitic fasteners | c before cold working; love made by cold forming by | w heat coi         |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | ly on how fasteners are made                                |                                                     |                    |
|                    | h as 302HQ       |                   |             |               |                       |                   |                          |                |                                             | .,                                                          | ,                                                   |                    |
| 8-8                |                  |                   |             |               |                       |                   |                          |                | 40 various mixtu                            | res of 301, 302, 303, 304, 30                               |                                                     |                    |
| 7-20%              | 8-13%            | .08%              | 2%          | .2%           | .03-15%               |                   | 1%                       | 0-4%           |                                             | 80,000-150,000                                              | 40,000 min.                                         | B85-95             |
| Jsually            | Usually          | Usually           |             | Usually       | Usually               |                   |                          | Usually        |                                             | usual range.                                                | After cold work:                                    |                    |
| 7-19%              | 8-10.5%          | .03-05%           |             | .045%         | .03%                  |                   |                          | 2%-3%          |                                             | After cold work:                                            | 80,000-90,000                                       |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 100,000-125,000<br>typical for                              | typical 1/4-5/8 dia.;<br>45,000-70,000              |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 1/4-5/8 dia.;                                               | typical 3/4                                         |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 100,000 typical for                                         | and over dia.                                       |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 3/4-1" dia.;                                                |                                                     |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 80,000-90,000 typical                                       |                                                     |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | over 1" dia.                                                |                                                     |                    |
| 04                 |                  |                   |             | head cap so   |                       | o frequentl       |                          | flat washei    | S.                                          | 05.000.150.000                                              | 140.000                                             | I = = = =          |
| 8-20%              | 8-10.5%          | .08%              | 2%          | .45%          | .03%                  |                   | 1%                       |                |                                             | 85,000-150,000                                              | 40,000 min.                                         | B85-95             |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | range. After cold work:                                     | After cold work:<br>90,000 typical for              |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 125,000 typical for                                         | 1/4-5/8 dia.;                                       |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 1/4-5/8 dia.;                                               | 50,000-70,000 typical                               |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 100,000 typical for                                         | for 3/4 and over dia.                               |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 3/4-1" dia.;                                                |                                                     |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 90,000 typical above 1" dia.                                |                                                     |                    |
| 04L                |                  |                   |             | n resistance  |                       | ling capaci       |                          | ı              | I                                           | I                                                           |                                                     |                    |
| 8-20%<br><b>05</b> | 8-12%            | .03%              | 2%          | .045%         | .03%                  | nuoro cold        | 1%                       | d kaana na     | rto non magnatio                            | Slightly lower than 304 due                                 | to lower carbon content                             |                    |
| 7-19%              | 10.5-13%         |                   | 2%          | 1.045%        | duffing St<br> .03%   | evere colu        | 1%                       | u keeps pa<br> | rts non-magnetic.                           | 90,000-125,000                                              | 40,000 min.                                         | Ι                  |
| 7 1370             | 10.5 1570        | .12/0             | 2 /0        | .043 /0       | .00 /0                |                   | 1 70                     |                |                                             | Typical: 100,000                                            | Typical: 50,000-70,000                              |                    |
| 16                 | Addition of      | molybdei          | num increa  | ases corrosi  | on resista            | nce to chlo       | oride and s              | ulfides.       |                                             | 1 3/                                                        | 34                                                  |                    |
| 6-18%              | 10-14%           | .08%              | 2%          | .045%         | .03%                  | 2-3%              | 1%                       |                |                                             | 85,000-140,000 usual                                        | 40,000 min.                                         | B85-95             |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | range. After cold work:                                     | After cold work:                                    |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 120,000 typical for                                         | 80,000-90,000 typical                               |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 1/4-5/8 dia.;                                               | for 1/4-5/8 dia.;                                   |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 95,000 typical for                                          | 50,000-70,000 typical                               |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             | 3/4-1" dia.;<br>80,000 typical above 1" dia.                | for 3/4 and over dia.                               |                    |
| 09                 | Higher chr       | L<br>omium an     | d nickel ai | ve better co  | rrosion re            | i<br>esistance at | t high temp              | eratures (°    | 1900 deg. F.)                               | 100,000 typical above 1 dia.                                |                                                     |                    |
| 22-24%             | 12-15%           | .2%               | 2%          | .045%         | .03%                  |                   | 1%                       | <u> </u>       | 100,000-120,000                             | 60,000-80,000                                               | B85-95                                              |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             |                                                             |                                                     |                    |
| 00 050150          | MADTENO          | TIO OTAIN         | II F00- Al- |               | 4-1-1 6-              |                   |                          |                | 1 1-1-1                                     |                                                             |                                                     | -1:66              |
|                    | nless. Tensi     |                   |             |               |                       |                   |                          |                | i nign carbon com                           | tent mean the lowest corrosi                                | on resistance among the                             | amerent            |
|                    |                  |                   |             |               |                       |                   |                          |                | towards high end o                          | of max. giving greater strengt                              | h but lowering corrosion                            | resistanc          |
| 1.5-14%            |                  | .30%              | 1.25%       | .06%          | .15%                  |                   | 1%                       |                |                                             | 180,000-250,000                                             | 150,000-200,000                                     | C34-C45            |
|                    |                  | Usually           | Usually     | Usually       | Usually               |                   |                          |                |                                             | if heat treated                                             | if heat treated                                     |                    |
|                    |                  | .1530%            |             | .04%          | .03%                  |                   |                          |                |                                             |                                                             |                                                     |                    |
| 10                 |                  |                   |             |               |                       | of the grad       |                          | % chrome       | ; used in highly st                         | ressed conditions.                                          |                                                     |                    |
| 1.5-13.5%          |                  | .15%              | 1%          | .04%          | .03%                  |                   | 1%                       |                |                                             | 180,000 heat treated                                        | 150,000 heat treated                                | C34                |
| <b>16</b><br>2-14% | Higher sulf      | ur conten<br>.15% | 1.25%       | chinability b | 1.15%                 | corrosion         | 1%                       |                | I                                           | 180,000 heat treated                                        | 150,000 heat treated                                | C34                |
| 20                 | Higher car       |                   |             | rength but lo |                       | l<br>rosion resi  |                          |                | I                                           | 1100,000 Heat treated                                       | 130,000 Heat Heateu                                 | 1004               |
| 2-14%              | l l              | .30%              | 1%          | .04%          | .03%                  |                   | 1%                       |                |                                             | 250,000 heat treated                                        | 200,000 heat treated                                | C45                |
|                    |                  | Nom.              |             |               |                       |                   |                          |                |                                             |                                                             |                                                     |                    |
|                    |                  | 15% Min           |             |               |                       |                   |                          |                |                                             |                                                             |                                                     |                    |
|                    |                  |                   |             |               |                       |                   |                          |                |                                             |                                                             |                                                     |                    |
| DECIDITAT          | ION HARDE        | NED STA           | INI ESS IV  | IONEL AND     | )<br>ALLIMIN          | IIM               |                          |                |                                             |                                                             |                                                     |                    |
| 30                 |                  |                   |             |               |                       |                   | tility in high           | and low t      | emneratures due t                           | to solution annealing and har                               | dening                                              |                    |
| 5.5-175%           |                  | .07%              | 1%          | .04%          | .03%                  | 1%                | linty in mgr             | 3-5%           | Columbian and                               | 135,000                                                     | 105,000                                             | C28                |
|                    |                  |                   |             |               |                       |                   |                          |                | Tantalum - 15.4                             |                                                             |                                                     |                    |
|                    |                  |                   |             |               |                       |                   |                          |                | 5%                                          |                                                             |                                                     |                    |
| lonel 400          |                  |                   |             | pper alloy f  |                       | rming; exc        | ellent corro             | sion resis     | tance in heat and s                         |                                                             | 400 000 == ==                                       |                    |
|                    | 63-70%           | .3%               | 2%          |               | .5%                   |                   |                          |                | 2.5%-Iron,                                  | 80,000-125,000                                              | 400,000-70,000                                      | B70                |
|                    |                  |                   |             |               |                       |                   |                          |                | .5%-Alum.,                                  |                                                             |                                                     |                    |
|                    |                  |                   |             |               |                       |                   |                          |                | .15% Sulf.,                                 |                                                             |                                                     |                    |
|                    |                  |                   |             |               | aade haat             | treatment         | for etranat              | h              | remainder Copper                            |                                                             |                                                     |                    |
| Juminum 2          | <b>N24</b> Mos   | t nonular         | of aluminu  | im alluve, n  |                       | aroutinibill      | ioi onitiigli            |                |                                             |                                                             |                                                     |                    |
| Muminum 2          | 2024 Mos         | t popular         | of aluminu  | ım alloys; n  |                       |                   |                          | 3 8-4 9%       | l 25% 7inc                                  | 60 000 heat treated                                         | 50 000 heat treated                                 | B60 hea            |
| Muminum 2<br>1%    | <b>!024</b> Mos  | t popular         | of aluminu  | ım alloys; n  | .5%                   |                   |                          | 3.8-4.9%       |                                             | 60,000 heat treated                                         | 50,000 heat treated                                 |                    |
|                    | 2 <b>024</b> Mos | t popular         |             | ım alloys; n  |                       |                   |                          | 3.8-4.9%       | .25% Zinc.<br>1.2-1.8%<br>Magnesium,        | 60,000 heat treated                                         | 50,000 heat treated                                 | B60 hea<br>treated |
|                    | <b>!024</b> Mos  | t popular         |             | ım alloys; n  |                       |                   |                          | 3.8-4.9%       | 1.2-1.8%                                    | 60,000 heat treated                                         | 50,000 heat treated                                 |                    |



|               |            | May       | Max.        | Max.         | Max.            |                | Max.         |            | Other               | I                      |               | Anneov   |
|---------------|------------|-----------|-------------|--------------|-----------------|----------------|--------------|------------|---------------------|------------------------|---------------|----------|
| Ob            | MI - I - I | Max.      |             |              |                 | No. In the st  |              |            |                     | Tamailla               | Viald         | Approx.  |
| Chromium      |            | Carbon    | Mangan.     | Phosph.      | Sulphur         | Molybd.        | Silicon      | Copper     | Elements            | Tensile                | Yield         | Hardness |
| BRASS and     |            |           |             |              |                 |                |              |            |                     |                        |               |          |
| Brass Alloy   | 270        | Good col  | d forming   | due to high  | copper co       | ontent; also   | o used for   |            |                     |                        |               |          |
|               |            |           |             |              |                 |                |              | 65%        | 35% Zinc            | 70,000                 | 45,000        | B65      |
| Brass Alloy   | 360        | Good ma   | chinability | due to add   | led lead; go    | od for scr     | rew machir   | e parts.   |                     |                        |               |          |
|               |            |           |             |              |                 |                |              | 61.5%      | 3% Lead             | 50,000                 | 30,000        | B55      |
|               |            |           |             |              |                 |                |              |            | remainder Zinc      |                        |               |          |
| Commercia     | l Brass    | Easier to | cold form   | as copper    | content inc     | creases; as    | copper co    | ntent decr | eases, the metal be | ecomes stronger and ha | rder.         |          |
|               |            |           |             |              |                 |                |              | 60-65%     | 35-40% Zinc.        | 55,000                 | 35,000        | B60      |
|               |            |           |             |              |                 |                |              |            | .0515 Lead          |                        |               |          |
| Bronze Allo   | v 651      | Generally | used for I  | hex head ca  | ap screws.      |                |              | •          |                     | '                      | <u> </u>      |          |
|               |            |           | .07%        |              |                 |                | 2.0%         | 96.0%      | .05% Lead max.      | 70,000-80,000          | 35,000-45,000 | B70-B75  |
|               |            |           |             |              |                 |                |              | min.       | 1.5% Zinc max.      |                        |               |          |
| Bronze Allo   | v 655      | Used for  | hot forged  | fasteners.   |                 |                |              |            | •                   | '                      | <u>'</u>      |          |
|               | .06%       |           | 1.5%        |              |                 |                | 3.8%         | 94.8%      | .05% Lead max.      | 70,000-80,000          | 35.000-45.000 | B70-B75  |
|               |            |           |             |              |                 |                |              | min.       | 1.5% Zinc max.      | .,                     | ,             |          |
| Commercia     | l Bronze   | Addition  | of lead hel | ps machina   | ability.        |                |              |            |                     |                        | -             |          |
|               |            | T         |             |              |                 |                | 2-4%         | 94-96%     | .058% Lead.         | 70.000-80.000          | 35.000-45.000 | B70-B75  |
|               |            |           |             |              |                 |                | ,.           |            | .05-1.5% Zinc.      |                        | ,             |          |
| Phosphorus    | Bronze     | Tin incre | ases stren  | nth: nhosni  | norus helps     | s against s    | tress corro  | sion: exce | llent cold forming  | properties             |               |          |
| p             |            |           |             | .3%          | l library monpo | _ inglimited o |              | 95%        | 5% Tin              | 60.000                 | 35.000        | B60      |
| Naval Bronz   | 7 <b>e</b> | Addition  | of tin give | s better cor | rosion resi     | istance ana    | ainst salt w | 100,1      | 10,0                | 100,000                | 100,000       | 1 230    |
| itavai Diviiz |            |           |             |              |                 |                | l suit w     | 59-62%     | .5-1% Tin,          | 70,000                 | 30,000        | B65      |
|               |            |           |             |              |                 |                |              | 00 02 /0   | 2% Lead             | 7 0,000                | 00,000        | 250      |
|               |            |           |             |              |                 |                |              |            | remainder Zinc      |                        |               |          |
|               |            |           |             |              |                 |                |              |            | Terriamider Zinc    |                        |               |          |

### **TORQUE GUIDE CHART - STAINLESS STEEL**

|                       |                             |                               | 18-8 SERIES<br>STAINLESS |
|-----------------------|-----------------------------|-------------------------------|--------------------------|
| Proof<br>Load<br>None | Yield<br>Strength<br>30,000 | Tensile<br>Strength<br>75,000 |                          |
| None                  | 30,000                      | 75,000                        |                          |

|           | Clamp  | Assembly Torque | Min.      |         |
|-----------|--------|-----------------|-----------|---------|
|           | Load   | Dry             | Lub       | Tensile |
| Size      | (lbs.) | (ft. lbs.)      | (ft lbs.) | (lbs.)  |
| 1/4 - 20  | 1350   | 68 in.          | 51 in.    | 2780    |
| 1/4 - 28  | 1500   | 77 in.          | 58 in.    | 3020    |
| 5/16 - 18 | 2200   | 12 ft.          | 9 ft.     | 4400    |
| 5/16 - 24 | 2400   | 13              | 10        | 4700    |
| 3/8 - 16  | 3200   | 20              | 15        | 6500    |
| 3/8 - 24  | 3700   | 23              | 17        | 9000    |
| 1/2 - 13  | 5900   | 50              | 37        | 11900   |
| 1/2 - 20  | 6700   | 56              | 42        | 12800   |
| 5/8 - 11  | 9500   | 100             | 75        | 18800   |
| 5/8 - 18  | 10800  | 113             | 84        | 20400   |
| 3/4 - 10  | 14100  | 177             | 132       | 27600   |
| 3/4 - 16  | 15700  | 197             | 148       | 29600   |
| 7/8 - 9   | 11700  | 171             | 128       | 37900   |
| 1 - 8     | 15300  | 256             | 192       | 49700   |
| 1-1/8 - 7 | 19300  | 363             | 272       | 62700   |
| 1-1/4 - 7 | 24500  | 512             | 384       | 78800   |
| 1-3/8 - 6 | 29200  | 671             | 503       | 94400   |
| 1-1/2 - 6 | 35600  | 891             | 668       | 114000  |

| 316             | 38M   |          |          | 316 STAINLESS |
|-----------------|-------|----------|----------|---------------|
|                 | Proof | Yield    | Tensile  |               |
| Diameter        | Load  | Strength | Strength |               |
| 1/4"-3/4"       | None  | 100,000  | 125,000  |               |
| 3/4" - 1"       | None  | 80,000   | 115,000  |               |
| 1 - 1-1/4"      | None  | 65000    | 105,000  |               |
| 1-1/4" - 1-1/2" | None  | 50,000   | 100,000  |               |

|           | Clamp  | Assembly Torque | Min.      |         |
|-----------|--------|-----------------|-----------|---------|
|           | Load   | Dry             | Lub       | Tensile |
| Size      | (lbs.) | (ft. lbs.)      | (ft lbs.) | (lbs.)  |
| 1/4 - 20  | 2100   | 9               | 7         | 4600    |
| 1/4 - 28  | 2400   | 10              | 7         | 5000    |
| 5/16 - 18 | 3400   | 18              | 13        | 7400    |
| 5/16 - 24 | 3800   | 20              | 15        | 7900    |
| 3/8 - 16  | 5100   | 32              | 24        | 10900   |
| 3/8 - 24  | 5700   | 36              | 27        | 15000   |
| 1/2 - 13  | 9350   | 78              | 58        | 19800   |
| 1/2 - 20  | 10550  | 88              | 66        | 21400   |
| 5/8 - 11  | 14950  | 156             | 117       | 31400   |
| 5/8 - 18  | 16850  | 176             | 132       | 34000   |
| 3/4 - 10  | 20300  | 276             | 121       | 42300   |
| 3/4 - 16  | 22670  | 308             | 191       | 45400   |
| 7/8 - 9   | 16850  | 246             | 213       | 58100   |
| 1 - 8     | 22900  | 368             | 290       | 69500   |
| 1-1/8 - 7 | 25400  | 386             | 411       | 87800   |
| 1-1/4 - 7 | 32200  | 548             | 480       | 110300  |
| 1-3/8 - 6 | 38400  | 629             | 629       | 125900  |
| 1-1/2 - 6 | 46700  | 835             | 835       | 152000  |

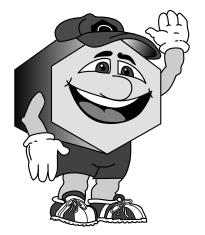
### **CORROSION GUIDE**

This guide details the effects of various corrosive environments on popularly used fastener materials.

|                                    | 10 0 202            | Stainless St        |                     | Proce and           |                     |                     |                    |                    |       |
|------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|--------------------|-------|
| Carracina                          | 18-8, 302           |                     | 440 446             | Brass and           |                     |                     | Conner             |                    |       |
| Corrosive                          | 303, 304            | 040                 | 410, 416            | Naval               | Silicon             |                     | Copper             |                    |       |
| Medium                             | 305                 | 316                 | 430                 | Bronze              | Bronze              | Copper              | (Monel)            | Aluminum           | Nylon |
| Acetate Solvents, Crude            | Excel               | Excel               | Good                | Fair                | Good                | Good                | Good               | Excel              | Good  |
| Acetate Solvents, Pure             | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel |
| Acetate Acid, Crude                | Good                | Excel               | Poor <sup>2</sup>   | Fair <sup>1</sup>   | Good                | Good                | Good               | Good               | Poor  |
| Acetate Acid (Pure)                | Good                | Excel               | Poor <sup>2</sup>   | Fair <sup>1</sup>   | Good                | Good                | Good               | Excel              | Poor  |
| Acetic Acid Vapors                 | Good                | Excel               | Poor                | Poor                | Good                | Good                | Fair               | Good               | Poor  |
| Acetic Anhydride                   | Good                | Excel               | Poor                | Poor                | Good                | Good                | Good               | Excel              | Poor  |
| Acetone                            | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel |
| Acetylene                          | Excel               | Excel               | Excel               | 3                   | Poor                | Poor                | Good               | Excel              |       |
| Alcohols                           | Excel               | Excel               | Excel               | Good                | Excel               | Excel               | Excel              | Good               | Good  |
| Aluminum Sulfate                   | Fair                | Good                | Poor                | Fair <sup>1</sup>   | Good                | Good                | Good               | Fair               | Poor  |
| Alums                              | Fair                | Good                | Poor                | Fair <sup>1</sup>   | Good                | Good                | Good               | Excel              | Fair  |
| Ammonia Gas <sup>4</sup>           | Excel               | Excel               | Excel               | Poor <sup>56</sup>  | 6                   | 6                   | 6                  | Excel              | Good  |
| Ammonium Chloride                  | Fair                | Excel               | Fair                | Fair <sup>1</sup>   | Good                | Good                | Excel              | Poor               | Fair  |
| Ammonium Hydroxide                 | Excel               | Excel               | Excel               | Poor                | Poor                | Poor                | Fair Good          | Good <sup>36</sup> |       |
| Ammonium Nitrate                   | Excel               | Excel               | Excel               | Poor                | Fair                | Fair                | Fair               | Excel              | Fair  |
| Ammonium Phosphate                 |                     |                     |                     |                     |                     |                     |                    |                    |       |
| (Ammoniacal)                       | Excel               | Excel               | Excel               | Poor                | Poor                | Poor                | Good               | Poor               | Good  |
| Ammonium Phosphate                 |                     |                     |                     |                     |                     |                     |                    |                    |       |
| (Neutral)                          | Excel               | Excel               | Good                | Fair                | Fair                | Fair                | Good               | Fair               | Excel |
| Ammonium Phosphate (Acid)          | Good                | Excel               | Fair                | Fair <sup>1</sup>   | Fair                | Fair                | Good               | Fair               | Fair  |
| Ammonium Sulfate                   | Excel               | Excel               | Good                | Fair <sup>1</sup>   | Fair                | Fair                | Good               | Good <sup>35</sup> | Fair  |
|                                    | Excel               | Excel               | Good                | Good                | Excel               | Excel               | Excel              | Excel              | Excel |
| Asphalt                            |                     |                     |                     |                     |                     |                     |                    |                    |       |
| Beer                               | Excel               | Excel               | 7                   | Good                | Good                | Good                | Excel              | Excel              | Excel |
| Beet Sugar Liquors                 | Excel               | Excel               | Good                | Good                | Excel               | Excel               | Excel              | Excel              | Good  |
| Benzene or Benzol <sup>8</sup>     | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel |
| Benzine <sup>8</sup>               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel |
| Borax                              | Excel               | Excel               | Excel               | Good                | Good                | Good                | Excel              | Good               | Good  |
| Boric Acid                         | Good                | Excel               | Fair                | Fair <sup>1</sup>   | Good                | Good                | Excel              | Excel              | Good  |
| Butane, Butylene, Butadiene9       | Excel <sup>10</sup> | Excel <sup>10</sup> | Excel <sup>10</sup> | Excel <sup>34</sup> | Excel <sup>34</sup> | Excel <sup>34</sup> | Excel              | Excel              | Excel |
| Calcium Bisulfite                  | Good                | Excel               | Poor                | Poor                | Good                | Good                | Poor               | Poor               | Good  |
| Calcium Hypochlorite               | Fair                | Good                | Poor                | Fair                | Fair                | Fair                | Fair               | Poor               | Fair  |
| Cane Sugar Liquors                 | Excel               | Excel               | Good                | Good                | Excel               | Excel               | Excel              | Excel              | Good  |
| Carbon Dioxide (Dry)               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel |
| Carbon Dioxide                     |                     |                     |                     |                     |                     |                     |                    |                    |       |
| (Wet and Aqueous)                  | Excel               | Excel               | Excel <sup>11</sup> | Fair <sup>11</sup>  | Good <sup>11</sup>  | Good <sup>11</sup>  | Good <sup>11</sup> | Excel              | Excel |
| Carbon Disulfide                   | Excel               | Excel               | Good                | Fair                | Poor                | Poor                | Fair               | Excel              | Excel |
| Carbon Tetrachloride <sup>12</sup> | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Good               | Excel |
| Chlorine (Dry)                     | Good                | Good                | Good                | Good                | Good                | Good                | Excel              | Poor               | Poor  |
| Chlorine (Wet)                     | Poor                | Fair                | Poor                | Poor                | Fair                | Fair                | Fair               | Poor               | Poor  |
|                                    |                     |                     |                     |                     |                     |                     |                    |                    |       |
| Chromic Acid                       | Good                | Excel               | Fair                | Poor                | Poor                | Poor                | Fair               | Poor               | Poor  |
| Citric Acid                        | Good                | Excel               | Fair                | Fair <sup>1</sup>   | Good                | Good                | Good               | Good               | Good  |
| Coke Oven Gas                      | Excel               | Excel               | Excel               | Fair                | Fair                | Fair                | Good               | Good               | Fair  |
| Copper Sulfate                     | Excel               | Excel               | Excel               | Poor                | Fair                | Fair                | Fair               | Poor               | Fair  |
| Core Oils                          | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel |
| Cottonseed Oil                     | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel |
| Creosote                           | Excel               | Excel               | Excel               | Fair                | Good                | Good                | Excel              | Good               |       |
| Ethers                             | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel |
| thylene Glycol                     | Excel               | Excel               | Excel               | Good                | Excel               | Excel               | Excel              | Good               | Good  |
| Ferric Chloride                    | Poor                | Poor                | Poor                | Poor                | Poor                | Poor                | Poor               | Poor               | Poor  |
| erric Sulfate                      | Excel               | Excel               | Excel               | Poor                | Fair                | Fair                | Fair               | Good               | Poor  |
| Formaldehyde                       | Excel               | Excel               | Excel               | Good                | Good                | Good                | Excel              | Good               | Good  |
| Formic Acid                        | Good                | Excel               | Poor                | Fair <sup>1</sup>   | Good                | Good                | Good               | Poor               | Poor  |
| reon                               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Good               | Excel |
|                                    |                     |                     |                     | Good                | Good                |                     |                    |                    |       |
| Furfural                           | Excel               | Excel               | Excel               |                     |                     | Good                | Excel              | Excel              | Excel |
| Gasoline (Sour)                    | Excel               | Excel               | Fair                | Fair                | Poor                | Poor                | Poor               | Poor               | Excel |
| Gasoline (Refined)                 | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel |
| Selatin                            | Excel               | Excel               | Fair <sup>13</sup>  | Fair <sup>13</sup>  | Excel <sup>13</sup> | Excel <sup>13</sup> | Excel              | Excel              | Excel |
| Glucose                            | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel |
| Glue                               | Excel               | Excel               | Excel               | Fair                | Excel               | Excel               | Excel              | Fair               | Excel |
| Glycerine or Glycerol              | Excel               | Excel               | Excel               | Good                | Excel               | Excel               | Excel              | Excel              | Good  |



|                                            | 18-8, 302           |                     |                     | Brass and          |                    |                    |                    |              |       |
|--------------------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------|-------|
| Corrosive                                  | 303, 304            |                     | 410, 416            | Naval              | Silicon            |                    | Copper             |              |       |
| Medium                                     | 305                 | 316                 | 430                 | Bronze             | Bronze             | Copper             | (Monel)            | Aluminum     | Nylon |
| Hydrochloric Acid                          | Poor                | Poor                | Poor                | Poor               | Fair <sup>14</sup> | Fair <sup>14</sup> | Fair <sup>14</sup> | Poor         | Poor  |
| Hydrocyanic Acid                           | Event               | Eveel               | Fair.               | Door               | Door               | Door               | Cood               | Eveel        | Fyeel |
| (Hydrogen Cyanide)                         | Excel               | Excel               | Fair                | Poor               | Poor               | Poor               | Good               | Excel        | Excel |
| Hydrofluoric Acid                          | Poor<br>Good        | Poor<br>Good        | Poor<br>Fair        | Poor<br>Fair       | Fair<br>Good       | Fair<br>Good       | Excel<br>Excel     | Poor<br>Poor | Poor  |
| Hydrogen Fluoride<br>Hydrogen <sup>9</sup> | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              | Excel              | Excel        | Excel |
| Hydrogen Peroxide                          | Excel               | Excel               | Excel               | Poor               | Fair               | Fair               | Good               | Good         | Fair  |
| Hydrogen Sulfide (Dry)                     | Excel               | Excel               | Good                | Fair <sup>6</sup>  | Poor <sup>6</sup>  | Poor <sup>6</sup>  | Fair <sup>6</sup>  | Excel        | Good  |
| Hydrogen Sulfide                           | LXCEI               | LXCei               | Good                | I all              | F001°              | F 001*             | ı alı-             | LXCei        | Goods |
| (Wet and Aqueous)                          | Good                | Excel               | Fair <sup>15</sup>  | Fair               | Poor               | Poor               | Fair               | Excel        | Good  |
| Lacquers and Lacquer Solvents              | Excel               | Excel               | Excel               | Fair               | Excel              | Excel              | Excel              | Excel        | Excel |
| Lime-Sulfur                                | Excel               | Excel               | Good                | Poor               | Fair               | Fair               | Good               | Poor         | Good  |
| Magnesium Chloride                         | Good                | Excel               | Fair                | Fair               | Good               | Good               | Excel              | Poor         | Excel |
| Magnesium Hydroxide                        | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Fair         | Good  |
| Magnesium Sulfate                          | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Good         | Excel |
| Mercuric Chloride                          | Poor                | Fair <sup>16</sup>  | Poor                | Poor               | Poor               | Poor               | Poor               | Poor         | LXCEI |
| Mercury                                    | Excel               | Excel               | Excel               | Poor               | Poor               | Poor               | Good               | Poor         | Excel |
| Milk                                       | Excel               | Excel               | Good                | Fair               | Fair               | Fair               | Fair               | Excel        | Excel |
| VIIIK<br>Volasses                          |                     |                     |                     |                    |                    |                    |                    |              |       |
|                                            | Excel               | Excel               | Good                | Good               | Excel              | Excel              | Excel              | Excel        | Excel |
| Natural Gas                                | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Excel        | Excel |
| Nickel Chloride <sup>17</sup>              | Fair                | Good                | Poor                | Poor               | Fair               | Fair               | Good               | Poor         | Poor  |
| Nickel Sulfate <sup>17</sup>               | Good                | Excel               | Fair                | Fair               | Good               | Good               | Excel              | Poor         | Poor  |
| Nitric Acid                                | Good                | Good                | Good <sup>18</sup>  | Poor               | Poor               | Poor               | Poor               | Fair         | Poor  |
| Oleic Acid                                 | Good <sup>20</sup>  | Excel               | Good <sup>20</sup>  | Fair <sup>19</sup> | Good <sup>24</sup> | Good <sup>24</sup> | Excel              | Excel        | Excel |
| Oxalic Acid                                | Good                | Excel               | Fair                | Fair               | Fair               | Fair               | Excel              | Poor         | Poor  |
| Oxygen <sup>9</sup>                        | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              | Excel              | Excel        | Good  |
| Palmitic Acid                              | Good <sup>20</sup>  | Excel               | Good <sup>20</sup>  | Fair <sup>19</sup> | Good <sup>24</sup> | Good <sup>24</sup> | Excel              | Excel        | Excel |
| Petroleum Oils (Sour)                      | Excel               | Excel               | Fair                | Fair               | Poor               | Poor               | Poor               | Poor         | Excel |
| Petroleum Oils (Refined)                   | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              | Excel              | Excel        | Excel |
| Phosphoric Acid 25%                        | Fair <sup>23</sup>  | Excel               | Poor                | Poor               | Good <sup>21</sup> | Good <sup>21</sup> | Good <sup>22</sup> | Poor         | Poor  |
| Phosphoric Acid 25%, 50%                   | Poor                | Good                | Poor                | Poor               | Good <sup>21</sup> | Good <sup>21</sup> | Good <sup>22</sup> | Poor         | Poor  |
| Phosphoric Acid 50%, 85%                   | Poor                | Good                | Poor                | Poor               | Good <sup>21</sup> | Good <sup>21</sup> | Good <sup>22</sup> | Excel        | Excel |
| Picric Acid                                | Excel               | Excel               | Good                | Poor               | Poor               | Poor               | Poor               | Fair         | Poor  |
| Potassium Chloride                         | Good                | Excel               | Fair                | Fair               | Good               | Good               | Excel              | Poor         | Excel |
| Potassium Hydroxide                        | Excel               | Excel               | Excel               | Poor               | Fair               | Fair               | Excel              | Poor         | Good  |
| Potassium Sulfate                          | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Excel        | Excel |
| Propane <sup>9</sup>                       | Excel <sup>10</sup> | Excel <sup>10</sup> | Excel <sup>10</sup> | Excel              | Excel              | Excel              | Excel              | Excel        | Excel |
| Rosin (Dark)                               | Excel               | Excel               | Excel               | Good               | Good               | Good               | Excel              | Excel        | Excel |
| Rosin (Light)                              | Excel               | Excel               | Excel               | Poor               | Poor               | Poor               | Good               | Good         | Excel |
| Shellac                                    | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Excel        | Excel |
| Soda Ash (Sodium Carbonate)                | Excel               | Excel               | Excel               | Good               | Good               | Excel              | Excel              | Poor         | Excel |
| Sodium Bicarbonate                         | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              | Excel              | Good         | Excel |
| Sodium Bisulfate                           | Poor                | Excel               | Poor                | Fair <sup>1</sup>  | Good               | Good               | Excel              | Fair         | Fair  |
| Sodium Chloride                            | Good                | Excel               | Fair                | Fair               | Good               | Good               | Excel              | Good         | Excel |
| Sodium Cyanide                             | Excel               | Excel               | Excel               | Poor               | Poor               | Poor               | Good               | Poor         | Good  |
| Sodium Hydroxide                           | Excel               | Excel               | Excel               | Poor               | Fair               | Fair               | Excel              | Poor         | Good  |
| Sodium Hypochlorite                        | Fair                | Excel               | Poor                | Excel              | Fair               | Fair               | Fair               | Poor         | Fair  |
| Sodium Metaphosphate                       | Excel               | Excel               | Good                | Fair               | Good               | Good               | Excel              | Fair         | Excel |
| Sodium Nitrate                             | Excel               | Excel               | Excel               | Fair               | Good               | Good               | Excel              | Excel        | Excel |
| Sodium Perborate                           | Excel               | Excel               | Excel               | Fair               | Good               | Good               | Excel              | Fair         |       |
| Sodium Peroxide                            | Excel               | Excel               | Excel               | Fair               | Good               | Good               | Excel              | Fair         | Fair  |
| Sodium Phosphate (Alkaline)                | Excel               | Excel               | Excel               | Fair               | Good               | Good               | Excel              | Poor         | Good  |
| Sodium Phosphate (Neutral)                 | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Poor         | Excel |
| Sodium Phosphate (Acid)                    | Good                | Excel               | Poor                | Fair <sup>1</sup>  | Good               | Good               | Excel              | Poor         | Fair  |
| Sodium Silicate                            | Excel               | Excel               | Excel               | Fair               | Good               | Good               | Excel              | Good         | Good  |
|                                            |                     |                     |                     |                    |                    |                    |                    |              |       |
| Sodium Sulfate                             | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Excel        | Excel |
| Sodium Sulfide                             | Excel               | Excel               | Excel               | Poor               | Poor               | Poor               | Good               | Poor         | Good  |
| Sodium Thiosulfate (Hypo)                  | Excel               | Excel               | Excel               | Poor               | Poor               | Poor               | Good               | Excel        | Good  |
| Sludge Acid                                | Poor                | Fair                | Poor                | Poor               | Good               | Good               | Good               | Poor         | _     |
| Stearic Acid                               | Good <sup>20</sup>  | Excel               | Good <sup>20</sup>  | Fair <sup>19</sup> | Good <sup>24</sup> | Good <sup>24</sup> | Excel              | Excel        | Excel |
| Sulfur                                     | Excel               | Excel               | Excel               | Fair               | Fair               | Fair               | Fair               | Excel        | Good  |
| Sulfur Chloride                            | Fair                | Good                | Poor                | Poor               | Poor               | Poor               | Good               | Poor         | Poor  |
| Sulfur Dioxide (Dry) <sup>9</sup>          | Excel               | Excel               | Excel               | Fair               | Excel              | Excel              | Excel              | Good         | Good  |
| Sulfur Dioxide (Wet)                       | Good                | Excel               | Poor                | Poor               | Good               | Good               | Poor               | Fair         | Fair  |




|                                 | Stainless          | Steel              |                    |                    |                    |                    |                    |          |                    |
|---------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------|--------------------|
|                                 | 18-8, 302          |                    |                    | Brass and          |                    |                    |                    |          |                    |
| Corrosive                       | 303, 304           |                    | 410, 416           | Naval              | Silicon            |                    | Copper             |          |                    |
| Medium                          | 305                | 316                | 430                | Bronze             | Bronze             | Copper             | (Monel)            | Aluminum | Nylon              |
| Sulfuric Acid 10%               | Poor               | Good <sup>25</sup> | Poor               | Poor               | Good <sup>25</sup> | Good               | Good <sup>25</sup> | Poor     | Poor               |
| Sulfuric Acid 10%, 75%          | Poor               | Poor               | Poor               | Poor               | Fair               | Fair               | Good               | Poor     | Poor               |
| Sulfuric Acid 75%, 95%          | Fair <sup>27</sup> | Good <sup>27</sup> | Fair <sup>27</sup> | Poor               | Fair <sup>26</sup> | Fair <sup>26</sup> | Fair <sup>26</sup> | Poor     | Poor               |
| Sulfuric Acid 95%               | Good               | Good               | Good               | Poor               | Fair               | Poor               | Poor               | Fair     | Poor               |
| Sulfurous Acid                  | Fair               | Good               | Poor               | Poor               | Good               | Good               | Poor               | Poor     | Fair               |
| Tar                             | Excel              | Excel              | Good               | Good               | Excel              | Excel              | Excel              | Excel    | Excel              |
| Tartaric Acid                   | Good               | Excel              | Fair               | Fair <sup>1</sup>  | Good               | Good               | Good               | Good     | Fair               |
| Toluene or Toluol <sup>8</sup>  | Excel              | Excel    | Excel              |
| Trichloroethylene <sup>12</sup> | Excel              | Excel    | Good               |
| Turpentine                      | Excel              | Excel              | Good <sup>28</sup> | Fair <sup>28</sup> | Excel              | Excel              | Excel              | Excel    | Excel              |
| Varnish <sup>29</sup>           | Excel              | Excel              | Excel              | Good               | Good               | Good               | Excel              | Excel    | Excel              |
| Vegetable Oils <sup>29</sup>    | Excel              | Excel              | Excel              | Good               | Good               | Good               | Excel              | Excel    | Excel              |
| Vinegar <sup>25</sup>           | Good               | Excel              | Fair               | Poor               | Good               | Good               | Good               | Excel    | Fair               |
| Water (Acid Mine Water)         | 31                 | 31                 | 31                 | Poor               | 30                 | 30                 | 30                 | Fair     | Good               |
| Water (Fresh)                   | Excel              | Excel              | Excel              | Fair <sup>32</sup> | Good               | Good               | Excel              | Excel    | Excel              |
| Water (Salt)                    | Good <sup>33</sup> | Fair <sup>33</sup> | Fair <sup>32</sup> | Good               | Good               | Excel              | Good               | Excel    |                    |
| Whiskey                         | Excel              | Excel              | Fair               | Good               | Good               | Good               | Good               | Fair     | Excel              |
| Wines                           | Excel              | Excel              | Fair               | Good               | Good               | Good               | Good               | Fair     | Excel              |
| Xylene or Xylol <sup>8</sup>    | Excel              | Excel    | Excel              |
| Zinc Chloride                   | Poor               | Good               | Poor               | Poor               | Good               | Good               | Excel              | Poor     | Good               |
| Zinc Sulfate                    | Good               | Excel              | Fair               | Fair               | Good               | Good               | Excel              | Good     | Good <sup>39</sup> |

### Notes:

- Subject to dezincification and/or stress corrosion; especially at elevated temperatures and with concentrated solutions.
- 2. May be useful with cold dilute acid.
- Alloys containing up to 60 percent copper acceptable; high copper alloys not acceptable.
- 4. Temperature assumed to be below that at which gas cracks and liberates nascent nitrogen.
- 5. Subject to stress corrosion with low concentrations.
- Apparently resistant to dry gas at ordinary temperatures; attacked rapidly by moist gas and by hot gas.
- 7. Not recommended for use with beverage grade.
- 8. Chemicals used for treating in manufacture assumed to be absent.
- Temperature assumed to be no higher than that normally encountered in compression, storage, and distribution.
- 10. Useful at elevated temperatures.
- 11. Not recommended for use with carbonated beverages.
- Water assumed to be absent.
- 13. Not recommended for use with edible grades.
- 14. Only with dilute or unaerated solutions.
- Subject to stress corrosion by moist gas; and to severe general corrosion by saturated acqueous solution.
- 16. Subject to stress corrosion.
- 17. None of these materials recommended for use with nickel plating solutions.
- 18. Higher chromium alloys (over 18 percent) preferred.
- 19. Not recommended for temperature over 212°F (100°C).
- Alloys with less than 18 percent Cr. not recommended for temperatures over 212°F (100°C). Others not recommended for temperatures over 392°F (200°C).

- 21. Up to 140°F (60°C).
- 22. Up to 194°F (90°C).
- 23. At room temperature.
- 24. Not recommended for temperatures over 392°F (200°C).
- Non-ferrous alloys preferred when unaerated and at temperatures above normal. Stainless Steel best when aerated and at normal to moderate temperatures.
- 26. With cold acid only.
- 27. In the absence of exposure to moist air.
- 28. Crude produce may contain acids which corrode these materials.
- 29. Some of these ratings may not apply when handling light colored products at elevated temperatures of 392°F (200°C).
- Good with water containing no oxidizing salts; fair with water containing oxidizing salts.
- Excellent with water containing oxidizing salts; not good with water containing no oxidizing salts.
- 32. Subject to dezincification with hot and/or aerated waters.
- 33. Subject to pitting attack.
- 34. Copper may act as a catalyst for undesirable reactions.
- 35. Free sulphuric acid absent.
- 36. Good at concentrations under 10 percent and below 100°F (38°C).
- Suitable for limited service at concentrations under 50 percent and below 100°F (38°C).
- 38. Good only at concentrations under 10 percent and below 100°F (38°C).
- 39. Good only at concentrations under 20 percent and below 100°F (38°C).





Anyone can hold the helm when the sea is calm.

PUBLILIUS SYRUS



### **IDENTIFICATION MARKINGS**

It is a mandatory requirement in SAE and ASTM standards that fasteners of the medium carbon and alloy steel strength grades be marked for grade identification. The only exceptions are slotted and recessed head screws and very small size fasteners – generally, smaller than 1/4" where head size doesn't permit marking. Additionally, and of major importance, these same standards require **all** carbon steel externally threaded fasteners be further marked to identify the manufacturer.

Identification markings are the purchaser's best guarantee of product quality. By indicating the strength properties the fastener should have and the producing company, markings provide traceability and accountability. With the ever present threat of a liability action in case of a service failure, traceability is ample incentive to any reputable producer to exercise all of the care necessary to manufacture fully conforming parts.

Carbon steel bolts and screws without markings should be viewed with a high degree of suspicion. The only prudent assumption is that the fastener has the lowest strength properties permitted in any steel grade, and if not manufacturer marked, then it was produced either by a non-North American company or by one using questionable practices.

### Grade Identification Markings for Popular Grades of Carbon Steel Externally Threaded Fasteners

| Grade<br>Identification |                                |                            | Proof<br>Load<br>Stress | Tensile<br>Strength<br>Min. |      | ess Rockwell |          |
|-------------------------|--------------------------------|----------------------------|-------------------------|-----------------------------|------|--------------|----------|
| Marking                 | Specification                  | Nominal Size (in.)         | ksi                     | ksi                         | Min. | Max          | See Note |
| Material: Low           | or Medium Carbon Steel         | 1/1.1                      |                         |                             | 5=0  | D.100        |          |
|                         | SAE J429 – Grade 1             | 1/4 thru 1-1/2             | 33                      | 60                          | B70  | B100         |          |
|                         | SAE J429 – Grade 2             | 1/4 thru 3/4               | 55                      | 74                          | B80  | B100         |          |
| ( )                     | over 3/4 thru 1-1/2            | 33                         | 60                      | B70                         | B100 | D.100        |          |
|                         | ASTM A307 – Grade A            | 1/4 thru 4                 |                         | 60                          | B69  | B100         |          |
| NO MARK                 | ASTM A307 – Grade B            | 1/4 thru 4                 | _                       | 60 min<br>100 max           | B69  | B95          |          |
|                         | 0.101.01.1.                    | 17                         |                         |                             |      |              |          |
| /laterial: Medii        | um Carbon Steel, Quenched an   |                            | 0.5                     | 100                         | 005  | 004          |          |
|                         | SAE J429 – Grade 5             | 1/4 thru 1                 | 85                      | 120                         | C25  | C34          |          |
|                         | ASTM A449 – Type               | over 1 thru 1-1/2          | 74                      | 105                         | C19  | C30          |          |
|                         | ASTM A449 – Type 1             | over 1-1/2 thru 3          | 55                      | 90                          | 183  | 235          | 3        |
| /laterial: Low          | or Medium Carbon Steel, Quend  | ched and Tempered          |                         |                             |      |              |          |
|                         | SAE J429 – Grade 5.1           | No. 6 thru 1/2             | 85                      | 120                         | C25  | C40          | 4        |
|                         |                                |                            |                         |                             |      |              |          |
| /laterial: Low (        | Carbon Martensite Steel, Queno |                            |                         |                             |      |              |          |
|                         | SAE J429 – Grade 5.2           | 1/4 thru 1                 | 85                      | 120                         | C26  | C36          |          |
|                         | ASTM A449 – Type 2             | 1/4 thru 1                 | 85                      | 120                         | C25  | C34          |          |
| Material: Mediu         | um Carbon Steel, Quenched an   | d Tempered                 |                         |                             |      |              |          |
| _                       | ASTM A325 - Type 1             | 1/2 thru 1                 | 85                      | 120                         | C24  | C35          | 5        |
|                         | 7.617.020                      | over 1 to 1-1/2            | 74                      | 105                         | C19  | C31          | Ü        |
| A325                    |                                | 0001110111/2               | 7-7                     | 100                         | 010  | 001          |          |
| /laterial: Low          | Carbon Martensite Steel, Queno | ched and Tempered          |                         |                             |      |              |          |
|                         | ASTM A325 - Type 2             | 1/2 thru 1                 | 85                      | 120                         | C24  | C35          |          |
| A325                    |                                | over 1 to 1-1/2            | 74                      | 105                         | C19  | C31          |          |
| Material: Atmo          | spheric Corrosion Resistant St | eel. Quenched and Tempered |                         |                             |      |              |          |
| ^                       | ASTM A325 – Type 3             | 1/2 thru 1                 | 85                      | 120                         | C24  | C35          | 6        |
| <u>A325</u>             | лотиглого туре о               | over 1 to 1-1/2            | 74                      | 105                         | C19  | C31          | J        |
|                         |                                |                            |                         |                             |      |              |          |

### **GRADE IDENTIFICATION MARKINGS FOR POPULAR GRADES OF CARBON STEEL EXTERNALLY THREADED FASTENERS**

| Carbon Alloy Steel, Quenched  Carbon Alloy Steel, Quenched  Carbon Alloy Steel, Quenched  E J429 – Grade 8  ETM A354 – Grade BD | 1/4 thru 2-1/2<br>Over 2-1/2 thru 4                             | Stress<br>ksi<br>105<br>95                                                                                                    | Min.<br>ksi<br>125<br>115                                                                                                                                               | Hardne<br>Min.<br>C26<br>C22                                                                                                                                                                                                                                 | Max C36 C33                                                                                                                                                                                                                                                      | See Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carbon Alloy Steel, Quenched TM A354 – Grade BC  Carbon Alloy Steel, Quenched E J429 – Grade 8                                  | and Tempered 1/4 thru 2-1/2 Over 2-1/2 thru 4                   | 105                                                                                                                           | 125                                                                                                                                                                     | C26                                                                                                                                                                                                                                                          | C36                                                                                                                                                                                                                                                              | See Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Carbon Alloy Steel, Quenched E J429 – Grade 8                                                                                   | 1/4 thru 2-1/2<br>Over 2-1/2 thru 4                             |                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Carbon Alloy Steel, Quenched<br>E J429 – Grade 8                                                                                | Over 2-1/2 thru 4                                               |                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E J429 – Grade 8                                                                                                                | and Tempered                                                    |                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                 | ana rempereu                                                    |                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TM A354 – Grade BD                                                                                                              | 1/4 thru 1-1/2                                                  | 120                                                                                                                           | 150                                                                                                                                                                     | C33                                                                                                                                                                                                                                                          | C39                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                 | 1/4 thru 2-1/2                                                  | 120                                                                                                                           | 150                                                                                                                                                                     | C33                                                                                                                                                                                                                                                          | C39                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                 | over 2-1/2 thru 4                                               | 105                                                                                                                           | 140                                                                                                                                                                     | C31                                                                                                                                                                                                                                                          | C39                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| on Martensite Steel, Quenche                                                                                                    | d and Tempered                                                  |                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .E J429 – Grade 8.2                                                                                                             | 1/4 thru 1                                                      | 120                                                                                                                           | 150                                                                                                                                                                     | C33                                                                                                                                                                                                                                                          | C39                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                 | and Tempered                                                    |                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TM A490 - Type 1                                                                                                                | 1/2 thru 1-1/2                                                  | 120                                                                                                                           | 150 min<br>170 max                                                                                                                                                      | C33                                                                                                                                                                                                                                                          | C38                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                 | d and Tempered                                                  |                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TM A490 - Type 2                                                                                                                | 1/2 thru 1                                                      | 120                                                                                                                           | 150 min<br>170 max                                                                                                                                                      | C33                                                                                                                                                                                                                                                          | C38                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                 |                                                                 |                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                 |                                                                 |                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| тм А490 – Туре 3                                                                                                                | 1/2 thru 1-1/2                                                  | 120                                                                                                                           | 150 min<br>170 max                                                                                                                                                      | C33                                                                                                                                                                                                                                                          | C38                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                 | TM A490 – Type 1  on Martensite Steel, Quenche TM A490 – Type 2 | on Martensite Steel, Quenched and Tempered TM A490 - Type 2 1/2 thru 1  eric Corrosion Resistant Steel, Quenched and Tempered | TM A490 – Type 1 1/2 thru 1-1/2 120  on Martensite Steel, Quenched and Tempered  TM A490 – Type 2 1/2 thru 1 120  eric Corrosion Resistant Steel, Quenched and Tempered | TM A490 – Type 1 1/2 thru 1-1/2 120 150 min 170 max  on Martensite Steel, Quenched and Tempered  TM A490 – Type 2 1/2 thru 1 120 150 min 170 max  eric Corrosion Resistant Steel, Quenched and Tempered  TM A490 – Type 3 1/2 thru 1-1/2 120 150 min 170 min | TM A490 - Type 1 1/2 thru 1-1/2 120 150 min C33 170 max  on Martensite Steel, Quenched and Tempered  TM A490 - Type 2 1/2 thru 1 120 150 min C33 170 max  eric Corrosion Resistant Steel, Quenched and Tempered  TM A490 - Type 3 1/2 thru 1-1/2 120 150 min C33 | TM A490 – Type 1 1/2 thru 1-1/2 120 150 min C33 C38    170 max   1 |

- 1. In addition to the indicated grade marking, all grades included in this Table must be marked for manufacturer identification.
- 2. While hex heads are shown, grade markings apply equally to products with other head configurations.
- 3. Hardnesses are Brinell Hardness Numbers.
- 4. Grade 5.1 is a popular grade for sems.
- 5. A325 Type 1 bolts may also be marked with 3 radial lines 120° apart in addition to the A325 marking.
- 6. The bolt manufacturer, at his option, may add other markings to indicate the use of atmospheric corrosion resistant steel.
- 7. A354 Grade BD products, in sizes 1-1/2" and smaller, are identified as shown and, at the manufacturer's option, may have the letters BD added. Larger sizes are marked only BD.

Forget yourself in your work. If your employer sees that you are more concerned about your own interests than about his, that you are fussy about getting credit of every little or big thing you do, then you are apt to be passed by when a responsible job has to be filled...Don't worry about how big an increase in your salary you can contrive to get. Don't let your mind dwell on money at all, if you can help it. Throw yourself, body, soul, and spirit, into whatever you are doing...The truth is that in every organization, no matter how large or how small, someone is taking notice of any employee who shows special ability.

HARRY B. THAYER



### **BOLTS**

Identification • Strength • Clamp • Torque • Materials



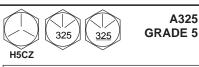
1-1/2 - 6

34800

### **GRADE 2**

| Diameter      | Proof<br>Load | Yield<br>Strength | Tensile<br>Strength |
|---------------|---------------|-------------------|---------------------|
| 1/4"-3/4"     | 55,000        | 57,000            | 74,000              |
| 3/4" - 1-1/2" | 33,000        | 36,000            | 60,000              |

Low or Medium Carbon Steel


|           | Clamp  | Assembly  | Torque    | Min.    |
|-----------|--------|-----------|-----------|---------|
|           | Load   | Dry       | Lub       | Tensile |
| Size      | (lbs.) | (in lbs.) | (in lbs.) | (lbs.)  |
| 1/4 - 20  | 1320   | 66        | 50        | 2700    |
| 1/4 - 28  | 1500   | 76        | 56        | 2900    |
| 5/16 - 18 | 2160   | 11        | 11        | 4400    |
| 5/16 - 24 | 2400   | 12        | 12        | 4700    |
| 3/8 - 16  | 3200   | 20        | 15        | 6400    |
| 3/8 - 24  | 3620   | 23        | 17        | 8800    |
| 1/2 - 13  | 5850   | 50        | 35        | 11500   |
| 1/2 - 20  | 6600   | 55        | 40        | 12500   |
| 5/8 - 11  | 9350   | 100       | 75        | 18500   |
| 5/8 - 18  | 10550  | 110       | 85        | 20000   |
| 3/4 - 10  | 13800  | 175       | 130       | 27000   |
| 3/4 - 16  | 15400  | 200       | 150       | 29000   |
| 7/8 - 9   | 11450  | 170       | 125       | 30000   |
| 1 - 8     | 15000  | 250       | 190       | 39500   |
| 1-1/8 - 7 | 18900  | 350       | 270       | 50000   |
| 1-1/4 - 7 | 24000  | 500       | 380       | 63000   |
| 1-3/8 - 6 | 28600  | 670       | 490       | 75500   |
|           |        |           |           |         |

**Yield Strength** is the load at which the fastener exhibits a specified elongation at a specific load.

870

**Tensile Strength** is the minimum total load that will fail the fastener.

**Clamp Load** – 75% x Proof x Stress Area. Also called the fastener preload or initial load. The "Clamp" Load is the true maximum load of any fastener.



|                                            | Proof  | Yield    | Tensile  |  |  |
|--------------------------------------------|--------|----------|----------|--|--|
| Diameter                                   | Load   | Strength | Strength |  |  |
| 1/4"-1"                                    | 85,000 | 92,000   | 120,000  |  |  |
| 3/4" - 1-1/2"                              | 74,000 | 81,000   | 105,000  |  |  |
| Medium Carbon Steel, Quenched and Tempered |        |          |          |  |  |

|           | Clamp  | Assembly  | Torque     | Min.    |
|-----------|--------|-----------|------------|---------|
|           | Load   | Dry       | Lub        | Tensile |
| Size      | (lbs.) | (in lbs.) | (ft. lbs.) | (lbs.)  |
| 1/4 - 20  | 2000   | 8         | 75         | 4450    |
| 1/4 - 28  | 2300   | 10        | 86         | 4840    |
| 5/16 - 18 | 3350   | 17        | 13         | 7190    |
| 5/16 - 24 | 3700   | 19        | 14         | 7670    |
| 3/8 - 16  | 4950   | 30        | 23         | 10530   |
| 3/8 - 24  | 5600   | 35        | 25         | 14400   |
| 1/2 - 13  | 9000   | 75        | 55         | 19000   |
| 1/2 - 20  | 10500  | 90        | 65         | 20500   |
| 5/8 - 11  | 14400  | 150       | 110        | 30100   |
| 5/8 - 18  | 16370  | 180       | 130        | 32600   |
| 3/4 - 10  | 21300  | 260       | 200        | 44200   |
| 3/4 - 16  | 23800  | 300       | 220        | 47400   |
| 7/8 - 9   | 29450  | 320       | 320        | 53100   |
| 1 - 8     | 38600  | 640       | 480        | 69500   |
| 1-1/8 - 7 | 42300  | 800       | 600        | 87800   |
| 1-1/4 - 7 | 53800  | 1120      | 840        | 110300  |
| 1-3/8 - 6 | 64100  | 1460      | 1100       | 132200  |
| 1-1/2 - 6 | 78000  | 1910      | 1460       | 159600  |

**Proof Load** is the load which the fastener must withstand without a permanent set.

**Torque Dry** assumes a coefficient of friction of 0.20.

**Torque Lubricated** assumes a coefficient of friction of 0.15.



### **GRADE 8**

| Proof   | Yield    | Tensile  |
|---------|----------|----------|
| Load    | Strength | Strength |
| 120,000 | 130,000  | 150,000  |

Carbon Alloy Steel, Quenched and Tempered

|            | Clamp  | Assembly   | Torque    | Min.    |
|------------|--------|------------|-----------|---------|
|            | Load   | Dry        | Lub       | Tensile |
| Size       | (lbs.) | (ft. lbs.) | (ft lbs.) | (lbs.)  |
| 1/4 - 20   | 2850   | 12         | 9         | 6600    |
| 1/4 - 28   | 3250   | 14         | 10        | 7200    |
| 5/16 - 18  | 4700   | 25         | 18        | 10700   |
| 5/16 - 24  | 5200   | 25         | 20        | 11500   |
| 3/8 - 16   | 7000   | 45         | 35        | 15800   |
| 3/8 - 24   | 7900   | 50         | 35        | 21600   |
| 1/2 - 13   | 12750  | 110        | 80        | 28600   |
| 1/2 - 20   | 14370  | 120        | 90        | 30800   |
| 5/8 - 11   | 20350  | 220        | 170       | 45200   |
| 5/8 - 18   | 23000  | 240        | 180       | 49000   |
| 3/4 - 10   | 30100  | 380        | 280       | 66300   |
| 3/4 - 16   | 33500  | 420        | 320       | 71100   |
| 7/8 - 9    | 41600  | 600        | 460       | 91000   |
| 1 - 8      | 54500  | 900        | 680       | 119200  |
| 1-1/8 - 7  | 68900  | 1280       | 960       | 150500  |
| 1-1/4 - 7  | 87200  | 1820       | 1360      | 189200  |
| ]1-3/8 - 6 | 104000 | 2380       | 1780      | 226700  |
| 1-1/2 - 6  | 126500 | 3160       | 2360      | 273600  |

**Minimum Tensile** - minimum load at which the fastener will fail. Minimum safe working load is 4:1.

**A325** is the designation for "structural" Grade 5 bolt which has larger head dimensions.

# **QUOTE**

"I can't do it" never yet accomplished anything; "I will try" has performed wonders.

GEORGE P. BURNHAM

### THREADED ROD DATA

|          | Stressed   |          |                  | Steel S  | trength (lbs) |                     |             |
|----------|------------|----------|------------------|----------|---------------|---------------------|-------------|
| Rod      | Cross      |          | ASTM A 307 Rod ( | Grade 2) | Sta           | inless Steel (Grade | 304 or 316) |
| Diameter | Section    | Yield    | Tensile          | Shear    | Yield         | Tensile             | Shear       |
| (inch)   | (sq. inch) | Strength | Strength         | Strength | Strength      | Strength            | Strength    |
| 1/4      | 0.0318     | 1,145    | 1,908            | 1,259    | 954           | 2,385               | 1,590       |
| 3/8      | 0.0775     | 2,790    | 4,650            | 3,069    | 2,325         | 5,813               | 3,875       |
| 1/2      | 0.1419     | 5,108    | 8,514            | 5,619    | 4,257         | 10,653              | 7,095       |
| 5/8      | 0.226      | 8,136    | 13,560           | 8,950    | 6,780         | 16,950              | 11,330      |
| 3/4      | 0.334      | 12,024   | 20,040           | 13,226   | 10,020        | 25,050              | 16,700      |
| 7/8      | 0.462      | 16,632   | 27,720           | 18,295   | 13,860        | 34,650              | 23,100      |
| 1        | 0.606      | 21,816   | 36,360           | 23,998   | 18,180        | 45,450              | 30,300      |
| 1-1/4    | 0.969      | 34,884   | 58,140           | 38,372   | 29,070        | 72,675              | 48,450      |
| 1-1/2    | 1.045      | 37,620   | 62,700           | 41,382   | 31,350        | 78,375              | 52,250      |



### **METRIC THREADS**

Metric threads evolved similarly to the inch thread series. The current ISO metric screw thread system includes a coarse series, fine series and a number of constant pitch thread series

The ISO metric coarse thread series is uniquely positioned, in terms of its thread pitches. It is located approximately half way between Unified coarse and Unified fine. For a given diameter, metric coarse threads are finer than Unified coarse but coarser than Unified fine. The metric coarse thread has certain technical advantages over either of the two Unified inch thread series.

ISO metric fine thread series has much finer thread pitches than those of the Unified fine series. Use of the metric fine series for commercial metric fastener applications is not recommended.

### **Metric External Fastener Strength Grades**

The metric fastener strength grades are called "property classes." This term originated in ISO standards and were continued into ASTM and SAE specifications. The ISO "property class' system for externally threaded metric fasteners is specified in ISO 898/1.

Property class designations, as found on the head of a metric bolt, are numerals indicating the following information:

 The numeral or numerals preceding the first decimal point approximate 1/100th of the specified minimum tensile strength in megapascals (MPa).

### **Metric Grades**

• The numeral following the first decimal point approximates 1/10th of the ratio (expressed as a percentage), between the minimum yield strength and the minimum tensile strength. The yield strength is always a percentage of the tensile strength. Yield strength is where thread deformation begins, and this value is always less than the bolt's tensile strength.

### **Metric Strength Grade System Examples**

A class 4.6 steel metric bolt has a specified minimum tensile strength of 400 MPa (4 x 100) and a specified minimum yield strength of 240 MPa (0.6 x 400). The numbers 4 and .6 make up the designation, with the .6 being the ratio of 240 MPa minimum yield strength to 400 MPa minimum tensile strength.

Not all metric designations give exact tensile and yield values as earlier discussed. Each gives reasonable approximates.

Note: It is a mandatory regulation in SAE and ASTM standards that inch series fasteners of the medium-carbon and alloy steel strength grades and metric fasteners of all property classes be marked for grade identification. The only exceptions are slotted and recessed head screws and bolts smaller than 5mm. Also of major importance is that these same standards require that all steel fasteners be marked to identify the manufacturer.

### METRIC/IMPERIAL COMPARATIVE CHART FOR DIAMETERS

1 inch = 25.4 mm

1 mm = 0.04"

| Metric Diameter | Decimal (in.) | Nearest Diameter (in.) | Decimal (in.) |
|-----------------|---------------|------------------------|---------------|
| M2              | (0.079)       | #2                     | (0.086)       |
| M2.5            | (0.098)       | #3                     | (0.999)       |
| M3              | (0.118)       | #5                     | (0.125)       |
| M3.5            | (0.138)       | #6                     | (0.138)       |
| M4              | (0.157)       | #8                     | (0.164)       |
| M5              | (0.197)       | 3/16                   | (0.187)       |
| M6              | (0.236)       | 1/4                    | (0.250)       |
| M8              | (0.315)       | 5/16                   | (0.312)       |
| M10             | (0.394)       | 3/8                    | (0.375)       |
| M12             | (0.472)       | 7/16                   | (0.437)       |
|                 |               | 1/2                    | (0.500)       |
| M14             | (0.551)       | 9/16                   | (0.562)       |
| M16             | (0.630)       | 5/8                    | (0.625)       |
| M20             | (0.787)       | 3/4                    | (0.750)       |
| M24             | (0.945)       | 1                      | (1.000)       |
| M30             | (1.181)       | 1-1/8                  | (1.125)       |
| M36             | (1.417)       | 1-1/4                  | (1.250)       |
|                 |               | 1-3/8                  | (1.375)       |
| M42             | (1.653)       | 1-1/2                  | (1.500)       |
| M48             | (1.890)       | 1-3/4                  | (1.750)       |
|                 |               | 2                      | (2.000)       |
| M56             | (2.205)       | 2-1/4                  | (2.250)       |
| M64             | (2.520)       | 2-1/2                  | (2.500)       |
| M72             | (2.835)       | 2-3/4                  | (2.750)       |
| M80             | (3.150)       | 3                      | (3.000)       |
| M90             | (3.543)       | 3-1/2                  | (3.500)       |
| M100            | (3.937)       | 4                      | (4.000)       |

### METRIC/IMPERIAL COMPARATIVE CHART FOR LENGTHS

| Metric Length | Decimal (in.) | Nearest Length (in.) | Decimal (in.) |
|---------------|---------------|----------------------|---------------|
| 10mm          | (0.394)       | 3/8                  | (0.375)       |
| 12mm          | (0.472)       | 1/2                  | (0.500)       |
| 16mm          | (0.630)       | 5/8                  | (0.625)       |
| 20mm          | (0.787)       | 3/4                  | (0.750)       |
| 25mm          | (0.984)       | 1                    | (1.000)       |
| 30mm          | (1.181        | 1-1/4                | (1.250)       |
| 35mm          | (1.387)       | 1-3/8                | (1.375)       |
| 40mm          | (1.575)       | 1-1/2                | (1.500)       |
| 45mm          | (1.772)       | 1-3/4                | (1.750)       |
| 50mm          | (1.968)       | 2                    | (2.000)       |
| 55mm          | (2.165)       | 2-1/4                | (2.250)       |
| 60mm          | (2.362)       | 2-3/8                | (3.375)       |
| 65mm          | (2.559)       | 2-1/2                | (2.500)       |
| 70mm          | (2.756)       | 2-3/4                | (2.750)       |
| 75mm          | (2.953)       | 3                    | (3.000)       |
| 80mm          | (3.150)       | 3-1/4                | (3.250)       |
| 90mm          | (3.543)       | 3-1/2                | (3.500)       |
| 100mm         | (3.937)       | 4                    | (4.000)       |
| 120mm         | (4.724)       | 4-3/4                | (4.750)       |
| 130mm         | (5.118)       | 5                    | (5.000)       |
| 140mm         | (5.512)       | 5-1/2                | (5.500)       |
| 150mm         | (5.905)       | 6                    | (6.000)       |
| 160mm         | (6.299)       | 6-1/4                | (6.250)       |
| 170mm         | (6.693)       | 6-1/2                | (6.500)       |
| 180mm         | (7.087)       | 7                    | (7.000)       |
| 190mm         | (7.480)       | 7-1/2                | (7.500)       |
| 200mm         | (7.874)       | 8                    | (8.000)       |
|               |               |                      |               |

**QUOTE** 

The three great essentials to achieve anything worth while are, first, hard work; second, stick-to-itiveness; third, common sense.

THOMAS EDISON



| Gauge or | Decimal  |             |  |
|----------|----------|-------------|--|
| Diameter | (Inches) | Millimeters |  |
| No. 0000 | 0.021    | .53         |  |
| No. 000  | 0.034    | .86         |  |
| No. 00   | 0.047    | 1.19        |  |
| No. 0    | 0.060    | 1.524       |  |
| No. 1    | 0.073    | 1.854       |  |
| No. 2    | 0.086    | 2.184       |  |
| No. 3    | 0.099    | 2.515       |  |
| No. 4    | 0.112    | 2.845       |  |
| No. 5    | 0.125    | 3.175       |  |
| No. 6    | 0.138    | 3.505       |  |
| No. 8    | 0.164    | 4.166       |  |
| No. 10   | 0.190    | 4.826       |  |
| No. 12   | 0.216    | 5.484       |  |

It is the direct man who strikes sledgehammer blows, who penetrates the very marrow of a subject at every stroke and gets the meat out of a proposition, who does things.

ORISON S. MARDEN

### **FASTENER CONVERSION CHART**

| INCH TO METRIC  | ;          |                         |
|-----------------|------------|-------------------------|
| Inch Equivalent |            | Metric Size-Pitch       |
| UNC             | UNF        | ISO and IFI Recommended |
| 1 - 64          | 1 - 72     | M2 x 0.4                |
| 3 - 48          | 3 - 56     | M2.5 x 0.45             |
| 4 - 40          | 4 - 48     | M3 x .05                |
| 6 - 32          | 6 - 40     | M3.5 x 0.6              |
| 8 - 32          | 8 - 36     | M4 x .07                |
| 10 - 24         | 10 - 32    | M5 x .08                |
| 1/4 - 20        | 1/4 - 28   | M6 x 1                  |
| 5/16 - 18       | 5/16 - 24  | M8 x 1.25               |
| 3/8 - 16        | 3/8 - 24   | M10 x 1.5               |
| 7/16 - 14       | 7/16 - 20  | M12 x 1.75              |
| 1/2 - 13        | 1/2 - 20   | M14 x 2                 |
| 5/8 - 11        | 5/8 - 18   | M18 x 2                 |
| 3/4 - 10        | 3/4 - 16   | M20 x 2.5               |
| 1 - 8           | 1 - 12     | M24 x 3                 |
| 1-1/4 - 7       | 1-1/8 - 12 | M30 x 3.5               |
| 1-1/2 - 6       | 1-1/4 - 12 | M36 x 4                 |

### APPROXIMATE EQUIVALENCY CHART **METRIC/IMPERIAL**

| ROUGHLY EQUIVALENT US BOLT MATERIALS |               |                 |                       |  |
|--------------------------------------|---------------|-----------------|-----------------------|--|
| Metric                               | Metric        |                 |                       |  |
| Bolt                                 | Nut Class     | <b>SAE J429</b> |                       |  |
| Class                                | Normally Used | Grades          | ASTM Grades           |  |
| 4.6                                  | 4 or 5        | 1               | A307, Grade A         |  |
| 4.f8                                 | 4 or 5        | 2               |                       |  |
| 5.8                                  | 5             | 2               |                       |  |
| 8.8                                  | 8             | 5               | A325, A449            |  |
| 9.9                                  | 9             | 5+              | A193, B7 and B16      |  |
| 10.9                                 | 10 or 12      | 8               | A490; A354, Grade 8D  |  |
| 12.9                                 | 10 or 12      |                 | A540; B21 through B24 |  |

### **STRENGTHS**

| METRIC (ISO 898)  No Marking  Grade: 4.8 (4.6, 5.8) Tensile: 429 MPa (60,900 psi)  MCH (SAE J429)  No Marking  Grade: 2 Tensile: 60,000 psi | METRIC (ISO 898) (SAE J429)  Grade: 10.9  Tensile: 1040 MPa (150,800 psi)                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Grade 8.8 Tensile: 830 MPa (120,350 psi)  Grade: 5 Tensile: 120,000 psi                                                                     | Grade: 12.9 Tensile: 1220 MPa (176,900 psi) *  Grade: AS I M AS / 4 Tensile: 170,000 psi Note: Generally not marked |

<sup>\*</sup>Note: Metric Hex Socket Cap Screws are available in lower strength grades (8.8, 10.9) and marked accordingly.

### **COMMON DIN NUMBERS FOR METRIC FASTENERS**

| DIN  | Hex Capscrews                                                        |
|------|----------------------------------------------------------------------|
| 931  | Coarse Thread Pitch Partially Threaded (Specify grade)               |
| 933  | Coarse Thread Pitch Fully Threaded (Specify grade)                   |
| 930  | Fine Thread Pitch Partially Threaded (Specify grade)                 |
| 961  | Fine Thread Pitch Fully Threaded (Specify grade)                     |
| DIN  | Nuts                                                                 |
| 934  | Hex Nuts (Specify pitch and class)                                   |
| 985  | Nylon Insert Locknuts (Specify pitch and class)                      |
| 980V | All Metal Locknuts (Specify pitch and class)                         |
| DIN  | Washers                                                              |
| 125  | Flatwashers                                                          |
| 127  | Lockwashers                                                          |
| DIN  | Socket Products                                                      |
| 912  | Socket Head Capscrews (Normally GR 12.9 and coarse thread)           |
| 7991 | Flat Head Socket Capscrews (Normally GR 12.9 and coarse thread)      |
| 916  | Socket Setscrews (Normally GR 12.9 and coarse thread)                |
| DIN  | Machine Screws                                                       |
| 7985 | Pan head Phillips Drive Zinc Plated                                  |
| 965  | Flat head Phillips Drive Zinc Plated                                 |
| DIN  | Threaded Rod                                                         |
| 975  | All Threaded Rod (Normally 1 meter lengths, specify grade and pitch) |
|      |                                                                      |

The great achievements have always been individualistic. Indeed, any original achievement implies separation from the majority. Though society may honour achievement, it can never produce it.

GEORGE CHARLES ROCHE

# TORQUE FIGURES FOR METRIC COARSE THREAD BOLTS AND SCREWS

Torque figures for bolts and screws with metric thread and head dimension, as in DIN 912, 931, 934 etc.

The figures MA in this table include:
a) coefficient of friction microns total
+ 0.14

- b) 90% of minimum elongation
- c) torque figures when assembling fasteners

The coefficient of friction of microns total = 0.14 applies for fasteners without coating (self-colour) when slightly lubricated. Additional lubrication of the thread will substantially alter the coefficient of friction, leading to uncontrollable pre-load situations! Pre-load situations will also be influenced by the fastening methods and tools used.

The following figures are guidelines only.

Figures in NM (Newton Meters).

| Thread Diameter |      |       | Property | Classes |       |  |
|-----------------|------|-------|----------|---------|-------|--|
|                 | 4.6  | 5.6   | 8.8      | 10.9    | 12.9  |  |
| M4              | 1.02 | 1.37  | 3.0      | 4.4     | 5     |  |
| M5              | 2.00 | 2.70  | 5.9      | 8.7     | 10    |  |
| M6              | 3.50 | 4.60  | 10       | 15      | 18    |  |
| M8              | 8.40 | 11    | 25       | 36      | 43    |  |
| M10             | 17   | 22    | 49       | 72      | 84    |  |
| M12             | 29   | 39    | 85       | 125     | 145   |  |
| M14             | 46   | 62    | 135      | 200     | 235   |  |
| M16             | 71   | 95    | 210      | 310     | 365   |  |
| M18             | 97   | 130   | 300      | 430     | 500   |  |
| M20             | 138  | 184   | 425      | 610     | 710   |  |
| M22             | 186  | 250   | 580      | 820     | 960   |  |
| M24             | 235  | 315   | 730      | 1,050   | 1,220 |  |
| M27             | 350  | 470   | 1,100    | 1,550   | 1,800 |  |
| M30             | 475  | 635   | 1,450    | 2,100   | 2,450 |  |
| M33             | 645  | 865   | 1,970    | 2,770   | 3,330 |  |
| M36             | 830  | 1,111 | 2,530    | 3,560   | 4,280 |  |



The only thing to do with good advice is to pass it on; it is never of any use to oneself.

OSCAR WILDE

# TORQUE FIGURES FOR METRIC FINE THREAD BOLTS AND SCREWS

|            | •        | ng Torque MA | max (Nm) |  |
|------------|----------|--------------|----------|--|
| Thread     | Property | Classes      |          |  |
| Diameter   | 8.8      | 10.9         | 12.9     |  |
| M8 x 1.00  | 22       | 30           | 36       |  |
| M10 x 1.25 | 42       | 59           | 71       |  |
| M12 x 1.25 | 76       | 105          | 130      |  |
| M14 x 1.50 | 120      | 165          | 200      |  |
| M16 x 1.50 | 180      | 250          | 300      |  |
| M18 x 1.50 | 260      | 365          | 435      |  |
| M20 x 1.50 | 360      | 510          | 610      |  |
| M22 x 1.50 | 480      | 680          | 810      |  |
| M24 x 2.00 | 610      | 860          | 1050     |  |

| Conversion Figures          |               |
|-----------------------------|---------------|
| To get NCM from Nm          | Nm x 100      |
| To get inch pounds from Ncm | Ncm x 0.08851 |
| To get foot pounds from Ncm | Ncm x 0.00737 |
| To get foot pounds from NM  | Nm x 0.7376   |

All information is strictly informative

# QUOTE

We pay for the mistakes of our ancestors, and it seems only fair that they should leave us the money to pay with.

DONALD MARQUIS



### **CONVERSION CHART**

| Fractions | Decimals |        | Fractions    | Decimals |        | Fractions    | Decimals |         | Fractions    | Decimals |         |
|-----------|----------|--------|--------------|----------|--------|--------------|----------|---------|--------------|----------|---------|
| n.        | in.      | mm     | in.          | in.      | mm     | in.          | in.      | mm      | in.          | in.      | mm      |
| -         | .0004    | .01    | 25/32        | .781     | 19.844 | -            | 2.165    | 55.     | 3-11/16      | 3.6875   | 93.663  |
| -         | .004     | .10    | -            | .7874    | 20.    | 2-3/16       | 2.1875   | 55.563  | _            | 3.7008   | 94.     |
|           | .01      | .25    | 51/64        | .797     | 20.241 | _            | 2.2047   | 56.     | 3-23/32      | 3.719    | 94.456  |
| /64       | .0156    | .397   | 13/16        | .8125    | 20.638 | 2-7/32       | 2.219    | 56.356  |              | 3.7401   | 95.     |
|           | .0197    | .50    |              | .8268    | 21.    | -            | 2.244    | 57.     | 3-3/4        | 3.750    | 95.     |
|           | .0295    | .75    | 53/64        | .828     | 21.034 | 2-1/4        | 2.250    | 57.150  | _            | 3.7795   | 96.     |
| /32       | .03125   | .794   | 27/32        | .844     | 21.431 | 2-9/32       | 2.281    | 57.944  | 3-25/32      | 3.781    | 96.044  |
| -         | .0394    | 1.     | 55/64        | .859     | 21.828 |              | 2.2835   | 58.     | 3-13/16      | 3.8125   | 96.838  |
| 3/64      | .0469    | 1.191  | 7/0          | .8661    | 22.    | 2-5/16       | 2-312    | 58.738  | - 07/00      | 3.8189   | 97.     |
| -         | .059     | 1.5    | 7/8          | .875     | 22.225 | - 0.44/00    | 2.3228   | 59.     | 3-27/32      | 3.844    | 97.631  |
| 1/16      | .062     | 1.588  | 57/64        | .8906    | 22.622 | 2-11/32      | 2.344    | 59.531  | 0.7/0        | 3.8583   | 98.     |
| 5/64      | .0781    | 1.984  | -            | .9055    | 23.    | - 0.0/0      | 2.3622   | 60.     | 3-7/8        | 3.875    | 98.425  |
| -         | .0787    | 2.     | 29/32        | .9062    | 23.019 | 2-3/8        | 2.375    | 60.325  | -            | 3.8976   | 99.     |
| 3/32      | .094     | 2.381  | 59/64        | .922     | 23.416 | -            | 2.4016   | 61.     | 3-29/32      | 3.9062   | 99.219  |
| -         | .0984    | 2.5    | 15/16        | .9375    | 23.813 | 2-13/32      | 2.406    | 61.119  | - 0.45/40    | 3.9370   | 100.    |
| 7/64      | .109     | 2.778  | -            | .9449    | 24.    | 2-7/16       | 2.438    | 61.913  | 3-15/16      | 3.9375   | 100.013 |
| -         | .1181    | 3.     | 61/64        | .953     | 24.209 | - 0.45/00    | 2.4409   | 62.     | 3-31/32      | 3.969    | 100.806 |
| /8        | .125     | 3.175  | 31.32        | .969     | 24.606 | 2-15/32      | 2.469    | 62.706  | <u> </u>     | 3.9764   | 101.    |
| -         | .1378    | 3.5    | -            | .9843    | 25.    |              | 2.4803   | 63.     | 4            | 4.000    | 101.600 |
| 9/64      | .141     | 3.572  | 63/64        | .9844    | 25.003 | 2-1/2        | 2.500    | 63.500  | 4-1/16       | 4.062    | 103.188 |
| 5/32      | .156     | 3.969  | 1            | 1.000    | 25.400 | _            | 2.5197   | 64.     | 4-1/8        | 4.125    | 104.775 |
| -         | .1575    | 4.     | - 4 4 /00    | 1.0236   | 26.    | 2-17/32      | 2.531    | 64.294  | -            | 4.1338   | 105.    |
| 1/64      | .172     | 4.366  | 1-1/32       | 1.0312   | 26.194 | -            | 2.559    | 65.     | 4-3/16       | 4.1875   | 106.363 |
|           | .177     | 4.5    | 1-1/16       | 1.062    | 26.988 | 2-9/16       | 2.562    | 65.088  | 4-1/4        | 4.250    | 107.950 |
| 3/16      | .1875    | 4.763  | - 4.0/00     | 1.063    | 27.    | 2-19/32      | 2.594    | 65.881  | 4-5/16       | 4.312    | 109.538 |
| 2/04      | .1969    | 5.     | 1-3/32       | 1.094    | 27.781 | -<br>2.5/0   | 2.5984   | 66.     | 4.0/0        | 4.3307   | 110.    |
| 3/64      | .203     | 5.159  | 4.4/0        | 1.1024   | 28.    | 2-5/8        | 2.625    | 66.675  | 4-3/8        | 4.375    | 111.125 |
| -         | .2165    | 5.5    | 1-1/8        | 1.125    | 28.575 | - 0.04/00    | 2.638    | 67.     | 4-7/16       | 4.438    | 112.713 |
| 7/32      | .219     | 5.556  | -            | 1.1417   | 29.    | 2-21/32      | 2.656    | 67.469  | 4-1/2        | 4.500    | 114.300 |
| 5/64      | .234     | 5.953  | 1-5/32       | 1.156    | 29.369 | -            | 2.6772   | 68.     | -            | 4.5275   | 115.    |
|           | .2362    | 6.     | -            | 1.1811   | 30.    | 2-11/16      | 2.6875   | 68.263  | 4-9/16       | 4.562    | 115.888 |
| /4        | .250     | 6.350  | 1-3/16       | 1.1875   | 30.163 | _            | 2.7165   | 69.     | 4-5/8        | 4.625    | 117.475 |
| -         | .2559    | 6.5    | 1-7/32       | 1.219    | 30.956 | 2-23/32      | 2.719    | 69.056  | 4-11/16      | 4.6875   | 119.063 |
| 7/64      | .2656    | 6.747  |              | 1.2205   | 31.    | 2-3/4        | 2.750    | 69.850  |              | 4.7244   | 120.    |
| -         | .2756    | 7.     | 1-1/4        | 1.250    | 31.750 | -            | 2.7559   | 70.     | 4-3/4        | 4.750    | 120.650 |
| /32       | .281     | 7.144  |              | 1.2598   | 32.    | 2-25/32      | 2.781    | 70.6439 | 4-13/16      | 4.8125   | 122.238 |
|           | .2953    | 715    | 1-9/32       | 1.281    | 32.544 | <del>-</del> | 2.7953   | 71.     | 4-7/8        | 4.875    | 123.825 |
| 9/64      | .297     | 7.541  | <del>-</del> | 1.2992   | 33.    | 2-13/16      | 2.8125   | 71.4376 | -            | 4.9212   | 125.    |
| /16       | .312     | 7.938  | 1-5/16       | 1.312    | 33.338 |              | 2.8346   | 72.     | 4-15/16      | 4.9375   | 125.413 |
| -         | .315     | 8.     | -            | 1.3386   | 34.    | 2-27/32      | 2.844    | 72.2314 | 5            | 5.000    | 127.000 |
| 21/64     | .328     | 8.334  | 1-11/32      | 1.344    | 34.131 |              | 2.8740   | 73.     | <u> </u>     | 5.1181   | 130.    |
| -         | .335     | 8.5    | 1-3/8        | 1.375    | 34.925 | 2-7/8        | 2.875    | 73.025  | 5-1/4        | 5.250    | 133.350 |
| 1/32      | .344     | 8.731  | -            | 1.3779   | 35.    | 2-29/32      | 2.9062   | 73.819  | 5-1/2        | 5.500    | 139.700 |
| -         | .3543    | 9.     | 1-13/32      | 1.406    | 35.719 | -            | 2.9134   | 74.     | -            | 5.5118   | 140.    |
| 23/64     | .359     | 9.128  | -            | 1.4173   | 36.    | 2-15/16      | 2.9375   | 74.613  | 5-3/4        | 5.750    | 146.050 |
| -         | .374     | 9.5    | 1-7/16       | 1.438    | 36.513 | <b>-</b>     | 2.9527   | 75.     | -            | 5.9055   | 150.    |
| 3/8       | .375     | 9.525  | <del>-</del> | 1.4567   | 37.    | 2-31/32      | 2.969    | 75.406  | 6            | 6.000    | 152.400 |
| 25/64     | .391     | 9.922  | 1-15/32      | 1.469    | 37.306 | -            | 2.9921   | 76.     | 6-1/4        | 6.250    | 158.750 |
| -         | .3937    | 10.    | -            | 1.4961   | 38.    | 3            | 3.000    | 76.200  | _            | 6.2992   | 160.    |
| 3/32      | .406     | 10.319 | 1-1/2        | 1.500    | 38.100 | 3-1/32       | 3.0312   | 76.994  | 6-1/2        | 6.500    | 165.100 |
| -         | .413     | 10.5   | 1-17/32      | 1.531    | 38.894 | <del>-</del> | 3.0315   | 77.     | <del>-</del> | 6.6929   | 170.    |
| 27/64     | .422     | 10.716 |              | 1.5354   | 39.    | 3-1/16       | 3.062    | 77.788  | 6-3/4        | 6.750    | 171.450 |
| -         | .4331    | 11.    | 1-9/16       | 1.562    | 39.688 | <del>-</del> | 3.0709   | 78.     | 7            | 7.000    | 177.800 |
| /16       | .438     | 11.113 | I -          | 1.5748   | 40.    | 3-3/32       | 3.094    | 78.581  | I -          | 7.0866   | 180.    |
| 9/64      | .453     | 11.509 | 1-19/32      | 1.594    | 40.481 | -            | 3.1102   | 79.     | -            | 7.4803   | 190.    |
| 5/32      | .469     | 11.906 | -            | 1.6142   | 41.    | 3-1/8        | 3.125    | 79.375  | 7-1/2        | 7.500    | 190.500 |
| -         | .4724    | 12.    | 1-5/8        | 1.625    | 41.275 |              | 3.1496   | 80.     | _            | 7.8740   | 200.    |
| 31/64     | .484     | 12.303 | _            | 1.6535   | 42.    | 3-5/32       | 3.156    | 80.169  | 8            | 8.000    | 203.200 |
|           | .492     | 12.5   | 1-21/32      | 1.6562   | 42.069 | 3-3/16       | 3.1875   | 80.963  | -            | 8.2677   | 210.    |
| /2        | .500     | 12.700 | 1-11/16      | 1.6875   | 42.863 | _            | 3.1890   | 81.     | 8-1/2        | 8.500    | 215.900 |
|           | .5118    | 13.    | -            | 1.6929   | 43.    | 3-7/32       | 3.219    | 81.756  | <u> </u>     | 8.6614   | 220.    |
| 3/64      | .5156    | 13.097 | 1-23/32      | 1.719    | 43.656 | <del>-</del> | 3.2283   | 82      | 9            | 9.000    | 228.600 |
| 7/32      | .531     | 13.494 | -            | 1.7323   | 44.    | 3-1/4        | 3.250    | 82.550  | -            | 9.0551   | 230.    |
| 5/64      | .547     | 13.891 | 1-3/4        | 1.750    | 44.450 | _            | 3.2677   | 83.     |              | 9.4488   | 240.    |
|           | .5512    | 14.    | _            | 1.7717   | 45.    | 3-9/32       | 3.281    | 83.344  | 9-1/2        | 9.500    | 241.300 |
| /16       | .563     | 14.288 | 1-25/32      | 1.781    | 45.244 | _            | 3.3071   | 84.     | -            | 9.8425   | 250.    |
| -         | .571     | 14.5   | -            | 1.8110   | 46.    | 3-5/16       | 3.312    | 84.1377 | 10           | 10.000   | 254.001 |
| 7/64      | .578     | 14.684 | 1-13/16      | 1.8125   | 46.038 | 3-11/32      | 3.344    | 84.9314 | -            | 10.2362  | 260.    |
| -         | .5906    | 15.    | 1-27/32      | 1.844    | 46.831 | -            | 3.3464   | 85.     | -            | 10.6299  | 270.    |
| 9/32      | .594     | 15.081 | -            | 1.8504   | 47.    | 3-3/8        | 3.375    | 85.725  | 11           | 11.000   | 279.401 |
| 9/64      | .609     | 15.478 | 1-7/8        | 1.875    | 47.625 | -            | 3.3858   | 86.     | -            | 11.0236  | 280.    |
| /8        | .625     | 15.875 | -            | 1.8898   | 48.    | 3-13/32      | 3.406    | 86.519  | _            | 11.4173  | 290.    |
|           | .6299    | 16.    | 1-29/32      | 1.9062   | 48.419 | _            | 3.4252   | 87.     | _            | 11.8110  | 300.    |
| 1/64      | .6406    | 16.272 | -            | 1.9291   | 49.    | 3-7/16       | 3.438    | 87.313  | 12           | 12.000   | 304.801 |
|           | .6496    | 16.5   | 1-15/16      | 1.9375   | 49.213 | _            | 3.4646   | 88.     | 13           | 13.000   | 330.201 |
| 1/32      | .656     | 16.669 | -            | 1.9685   | 50.    | 3-15/32      | 3.469    | 88.106  | -            | 13.7795  | 350.    |
|           | .6693    | 17.    | 1-31/32      | 1.969    | 50.006 | 3-1/2        | 3.500    | 88.900  | 14           | 14.000   | 355.601 |
| 3/64      | .672     | 17.066 | 2            | 2.000    | 50.800 | -            | 3.5039   | 89.     | 15           | 15.000   | 381.001 |
| 1/16      | .6875    | 17.463 | _            | 2.0079   | 51.    | 3-17/32      | 3.531    | 89.694  | _            | 15.7480  | 400.    |
| 5/64      | .703     | 17.859 | 2-1/32       | 2.03125  | 51.594 | - "          | 3.5433   | 90.     | 16           | 16.000   | 406.401 |
|           | .7087    | 18.    |              | 2.0472   | 52.    | 3-9/16       | 3.562    | 90.4877 | 17           | 17.000   | 431.801 |
| 3/32      | .719     | 18.256 | 2-1/16       | 2.062    | 52.388 | _            | 3.5827   | 91.     | ''           | 17.7165  | 450.    |
|           | .7283    | 18.5   |              | 2.0866   | 53.    | 3-19/32      | 3.594    | 91.281  | 18           | 18.000   | 457.201 |
| 7/64      | .734     | 18.653 | 2-3/32       | 2.000    | 53.181 | -            | 3.622    | 92.     | 19           | 19.000   | 482.601 |
| .,01      | .7480    | 19.    | 2-1/8        | 2.094    | 53.975 | 3-5/8        | 3.625    | 92.075  | _            | 19.6850  | 500.    |
|           | ., -00   |        |              |          |        | 3-21/32      | 3.656    | 92.869  |              |          |         |
| /4        | .750     | 19.050 | _            | 2.126    | 54     |              |          |         | 20           | 20.000   | 508.001 |



| METRIC TAE  | BLES                                                                                                              |
|-------------|-------------------------------------------------------------------------------------------------------------------|
| LINEAR      | One METRE (m) = 10 decimetre (dm) = 100 centimetre (cm) = 1000 millimetres (mm) 1000 metres = One kilometre (km)  |
| SQUARE      | One SQUARE METRE (m2) = 100 sq. decimetres (dm2) = 1000 sq. centimetres (cm2) = 1,000,000 sq. millimetres (mm2)   |
| CUBIC       | One CUBIC METRE (m3) = 1000 cu. decimetre (dm3) = 1,000,000 cu. centimetres (cm3)                                 |
| CAPACITY    | One LITRE (L) = 10 decilitres (dL) = 1000 millilitres (mL) 100 litres = One Hectolitre (hL)                       |
| WEIGHT      | One DILOGRAM (kg) = 100 decagrams (dkg) = 1000 grams (g) 100 kilos = One metric cent (q) 1000 kilos = One ton (t) |
| PRESSURE    | KILO PER SQUARE CENTIMETRE (kg/cm2) One kilo per sq. centimetre = One ATMOSPHERE (atm)                            |
| TEMPERATURE | CENTIGRADE degree (°C) = CELCIUS degree (°C)                                                                      |

### **METRIC CONVERSION EQUIVALENTS**

### **INCH to METRIC**

1 inch = 25,400 millimetres 1 inch = 2.540 centimetres 1 foot = 304.800 millimetres 1 foot = 30.480 centimetres 1 foot = 0.3048 metres 1 yard = 91.4400 centimetres 1 yard = 0.9144 metres 1 mile = 1.609.35 metres 1 mile = 1.609 kilometres

### LINEAR

### **METRIC to INCH**

1 millimetre = .0393700 inches 1 centimetre = .393700 inches 1 metre = 39.3700 inches 1 metre = 3,2808 feet 1 metre = 1.0936 yards 1 kilometre = .62137 miles

### SQ. INCH to METRIC

1 sq. inch = 645.16 sq. millimetres 1 sq. inch = 6.4516 sq. centimetres 1 sq. foot = 929.00 sq. centimetres 1 sq. foot = .0929 sq. metres 1 sq. yard = .836 sq. metres 1 sq. mile = 2.5889 sq. kilometres

### AREA

### METRIC to SQ. INCH

1 sq. millimetre = .00155 sq. inches 1 sq. centimetre = .1550 sq. inches 1 sq. metre = 10.7640 sq. feet 1 sq. metre = 1.196 sq. yard 1 sq. kilometre = .38614 sq. miles

### **CU. INCH to METRIC**

1 cu. inch = 16.387 sq. centimetres 1 cu. foot = .02832 cu. metres 1 cu. yard = .765 cu. metres

### CUBIC

### METRIC to CU. INCH

1 cu. centimetre ≠ .0610 cu. inches 1 cu. metre = 35.314 cu. feet 1 cu. metre = 1.308 cu. yards

### IMPERIAL to METRIC

1 fluid ounce = 28.413 millilitres 1 fluid ounce = 0.02841 litres 1 pint = 0.56826 litres 1 quart = 1.13652 litres 1 gallon = 4.546 litres

### CAPACITY

### **METRIC to IMPERIAL**

1 millilitre = 0.035195 fluid oz.
1 centilitre = 0.35195 fluid oz.
1 decilitre = 3.5195 fluid oz.
1 litre = 0.88 quarts
1 hectolitre = 21.9969 gallons

### **AVOIR DUPOIS to METRIC**

1 grain = 64.7989 milligrams 1 ounce = 28.35 grams 1 pound = .4536 kilograms 1 short ton (2000 lbs.) = 907.200 kilograms 1 short ton (2000 lbs.) = 9.072 metric cents 1 short ton (2000 lbs.) = 9.072 ton

### WEIGHT

### **METRIC to AVOIR DUPOIS**

1 gram = 15.432 grains 1 dekogram = .353 ounces 1 kilogram = 2.2046 pounds 1 metric cent = 220.46 pounds 1 ton = 2204.6 pounds 1 ton = 1.102 short tons

### **POUNDS/INCHES to METRIC**

### PRESSURE

### **METRIC to POUNDS/INCHES**

1 pound per square inch = .0703 kilogram per square centimetre 1 pound per square inch = .0703 atmosphere (metric) 1 kilogram/sq. centimetre = 14.223 pounds/sq. inch 1 kilogram/sq. centimetre = 1 atmosphere

### TEMPERATURE

FAHRENHEIT to CELSIUS

1 Fahrenheit degree (°F) = 1.8 x (°C) plus 32

CELSIUS to FAHRENHEIT

1 Centigrade (Celsius) degree (°) = .556 x (°F minus 32)



### **RECOMMENDED TAPPING DRILL SIZE**

### M (ISO METRIC COARSE)

| Size | Pitch | Drill |
|------|-------|-------|
| mm   | mm    | mm    |
| M1   | .25   | .75   |
| M1.1 | .25   | .85   |
| M1.2 | .25   | .95   |
| M1.4 | .3    | 1.1   |
| M1.6 | .35   | 1.25  |
| M1.8 | .35   | 1.45  |
| M2   | .4    | 1.6   |
| M2.2 | .45   | 1.75  |
| M2.5 | .45   | 2.05  |
| M3   | .5    | 2.5   |
| M3.5 | 6     | 2.9   |
| M4   | .7    | 3.3   |
| M4.5 | .75   | 3.75  |
| M5   | .8    | 4.2   |
| M6   | 1     | 5     |
| M7   | 1     | 6     |
| M8   | 1.25  | 6.75  |
| M9   | 1.25  | 7.75  |
| M10  | 1.5   | 8.5   |
| M11  | 1.5   | 9.5   |
| M12  | 1.75  | 10.2  |
| M14  | 2     | 12    |
| M16  | 2     | 14    |
| M18  | 2.5   | 15.5  |
| M20  | 2.5   | 17.5  |
| M22  | 2.5   | 19.5  |
| M24  | 3     | 21    |
| M27  | 3     | 24    |
| M30  | 3.5   | 26.5  |
| M33  | 3.5   | 29.5  |
| M36  | 4     | 32    |
| M39  | 4     | 35    |
| M42  | 4.5   | 37.5  |
| M45  | 4.5   | 40.5  |
| M48  | 5     | 43    |
| M52  | 5     | 47    |
| M56  | 5.5   | 50.5  |
| M60  | 5.5   | 54.5  |
| M64  | 6     | 58    |
| M68  | 6     | 62    |
| M72  | 6     | 66    |
| M76  | 6     | 70    |

### MF (ISO METRIC FINE)

| Size       | Pitch     | Drill         |
|------------|-----------|---------------|
| mm         | mm        | mm            |
| M2         | .25       | 1.75          |
| M2.2       | .25       | 1.95          |
| M2.3       | .25       | 2.05          |
| M2.5       | .35       | 2.15          |
| M2.6       | .35       | 2.25          |
| M3         | .35       | 2.65          |
| M3.5       | .35       | 3.15          |
| M4         | .35       | 3.65          |
| M4         | .5        | 3.5           |
| M5         | .35       | 4.65          |
| M5         | .5        | 4.5           |
| M5         | .75       | 4.25          |
| M5.5       | .5        | 5             |
| M6         | .5        | 5.5           |
| M6         | .75       | 5.25          |
| M7         | .75       | 6.25          |
| M8         | .5        | 7.5           |
| M8         | .75       | 7.25          |
| M8         | 1         | 7.25          |
| M9         | .75       | 8.25          |
| M9         | .1        | 8             |
| M10        | .5        | 9.5           |
| M10        | .75       | 9.25          |
| M10        | 1         | 9.25          |
| M10        | 1.25      | 8.75          |
| M11        | .75       | 10.25         |
| M11        | 1         | 10.23         |
| M11        | 1.25      | 9.75          |
| M12        | .5        | 11.5          |
| M12        | .75       | 11.25         |
| M12        | 1         | 11.23         |
| M12        | 1.25      | 10.75         |
| M12        | 1.5       | 10.73         |
| M14        | 1.5       | 13            |
| M14        | 1.25      | 12.75         |
| M14        | 1.5       | 12.75         |
| M15        | .75       | 14.25         |
| M15        | 1         | 14.23         |
| M15        |           | 13.5          |
|            | 1.5       |               |
| M16<br>M16 | .5<br>.75 | 15.5<br>15.25 |
|            | 1         | 15.25         |
| M16<br>M16 | 1.25      |               |
|            |           | 14.75         |
| M16        | 1.5       | 14.5          |
| M17        | 1         | 16            |
| M17        | 1.5       | 15.5          |
| M18        | .75       | 17.25         |
| M18        | 1.25      | 16.75         |
| M18        | 1.5       | 16.5          |
| M18        | 2         | 16            |
| M19        | 1         | 18            |
| M20        | 1         | 19            |
| M20        | 1.5       | 18.5          |
| M20        | 2         | 18            |
| M22        | 1         | 21            |
| M22        | 1.5       | 20.5          |
| M22        | 2         | 20            |
| M24        | 1         | 23            |

### MF (ISO METRIC FINE)

| Size | Pitch    | Drill |
|------|----------|-------|
| mm   | mm       | mm    |
| M24  | 1.5      | 22.5  |
| M24  | 2        | 22    |
| M25  | 1        | 24    |
| M25  | 1.5      | 23.5  |
| M25  | 2        | 23    |
| M27  | 1        | 26    |
| M27  | 1.5      | 25.5  |
| M27  | 2        | 25    |
| M28  | 1        | 27    |
| M28  | 1.5      | 26.5  |
| M28  | 2        | 26    |
| M30  | <br>1    | 29    |
| M30  | 1.5      | 28.5  |
| M30  | 2        | 28    |
| M30  | 3        | 27    |
|      |          |       |
| M32  | 1        | 31    |
| M32  | 1.5      | 30.5  |
| M32  | 2        | 30    |
| M33  | 1.5      | 31.5  |
| M33  | 2        | 31    |
| M33  | 3        | 30    |
| M35  | 1.5      | 33.5  |
| M35  | 2        | 33    |
| M35  | 3        | 32    |
| M36  | 1        | 35    |
| M36  | 1.5      | 34.4  |
| M36  | 2        | 34    |
| M36  | 3        | 33    |
| M38  | 1        | 37    |
| M38  | 1.5      | 36.5  |
| M38  | 2        | 36    |
| M39  | 1.5      | 37.5  |
| M39  | 2        | 37    |
| M39  | 3        | 36    |
| M40  | <u>3</u> | 39    |
|      | 1.5      |       |
| M40  |          | 38.5  |
| M40  | 3        | 37    |
| M42  | 1.5      | 40.5  |
| M42  | 2        | 40    |
| M42  | 3        | 39    |
| M42  | 4        | 38    |
| M45  | 1.5      | 43.5  |
| M45  | 2        | 43    |
| M45  | 3        | 42    |
| M48  | 1.5      | 46.5  |
| M48  | 2        | 46    |
| M48  | 3        | 45    |
| M48  | 4        | 44    |
| M50  | 1.5      | 48.5  |
| M50  | 2        | 48    |
| M50  | 3        | 47    |
| M52  | 1.5      | 50.5  |
|      |          |       |
| M52  | 2        | 50    |
| M52  | 3        | 49    |
| M52  | 4        | 48    |
| M56  | 2        | 54    |
| M56  | 4        | 52    |

All information is strictly informative

I know of no more disagreeable situation than to be left feeling generally angry without anybody in particular to be angry at.

FRANK MOORE COLBY

### **DECIMAL EQUIVALENTS**

Fractional • Wire • Metric • Letter Sizes

| Thread  | Drill |
|---------|-------|
| 0-80    | 3/64  |
| 1-64    | 53    |
| 1-72    | 53    |
| 2-56    | 51    |
| 2-64    | 50    |
| 3-48    | 5/64  |
| 3-56    | 46    |
| 4-40    | 43    |
| 4-48    | 42    |
| 5-40    | 39    |
| 5-44    | 37    |
| 6-32    | 36    |
| 6-40    | 33    |
| 8-32    | 29    |
| 8-36    | 29    |
| 10-24   | 25    |
| 10-32   | 21    |
| 12-24   | 17    |
| 12-28   | 15    |
| 1/4-20  | 7     |
| 1/4-28  | 3     |
| 5/16-18 | F     |
| 5/16-24 | I     |
| 3/8-16  | 5/16  |
| 3/8-24  | Q     |
| 7/16-14 | U     |
| 7/16-20 | W     |
| 1/2-13  | 27/64 |
| 1/2-20  | 29/64 |
| 9/16-12 | 31/64 |
| 9/16-18 | 33/64 |
| 5/8-11  | 17/32 |
| 5/8-18  | 37/64 |
| 3/4-10  | 21/32 |
| 3/4-16  | 11/16 |
| 7/8-9   | 49/64 |
| 7/8-14  | 13/16 |
| 1-8     | 7/8   |
| 1-12    | 59/64 |
| 1-14    | 15/16 |

| Drill Size | Decimal |
|------------|---------|
| 0.10       | .0039   |
| 97         | .0059   |
| 96         | .0063   |
| 95         | .0067   |
| 94         | .0071   |
| 93         | .0075   |
| 92         | .0079   |
| 0.20       | .0079   |
| 91         | .0083   |
| 90         | .0087   |
| 89         | .0091   |
| 88         | .0095   |
| 87         | .0100   |
| 86         | .0105   |
| 85         | .0010   |
| 84         | .0015   |
| 0.30       | .0018   |
| 83         | .0120   |
| 82         | .0125   |
| 81         | .0130   |
| 80         | .0135   |
| 0.35       | .0138   |
| 79         | .0145   |
| 1/64       | .0156   |
| 0.40       | .0157   |
| 78         | .0160   |
| 0.45       | .0177   |
| 77         | .0180   |
| 0.50       | .0197   |
| 76         | .0200   |
| 75         | .0210   |
| 0.55       | .0217   |
| 74         | .0225   |
| 0.60       | .0236   |
| 73         | .0240   |
| 72         | .0250   |
| 0.65<br>71 | .0256   |
| 0.70       | .0260   |
| 70         | .0276   |
| 69         | .0200   |
| 0.75       | .0295   |
| 68         | .0233   |
| 1/32       | .0312   |
| 0.80       | .0315   |
| 67         | .0320   |
| 66         | .0330   |
| 0.85       | .0335   |
| 65         | .0350   |
| 0.90       | .0354   |
| 64         | .0360   |
| 63         | .0370   |
| 0.95       | .0374   |
| 62         | .0380   |
| 61         | .0390   |
| 1.00       | .0394   |
| 60         | .0400   |
| 59         | .0410   |
| 1.05       | .0413   |
| 58         | .0420   |
| 57         | .0430   |
| 1.10       | .0433   |
| 1.15       | .0453   |
| 56         | .0465   |
| 3/64       | .0469   |
| 1.20       | .0472   |
| 1.25       | .0492   |
| 1.30       | .0512   |
| 55         | .0520   |
|            |         |

| Drill Size | Decimal |
|------------|---------|
| 1.35       | .0531   |
| 54         | .0550   |
| 1.40       | .0551   |
| 1.45       | .0571   |
| 1.50       | .0591   |
|            |         |
| 53         | .0595   |
| 1.55       | .0610   |
| 1/16       | .0625   |
| 1.60       | .0630   |
| 52         | .0635   |
| 1.65       | .0650   |
| 1.70       | .0669   |
| 51         | .0570   |
| 1.75       | .0689   |
|            |         |
| 50         | .0700   |
| 1.80       | .0709   |
| 1.85       | .0728   |
| 49         | .0730   |
| 1.90       | .0748   |
| 48         | .0760   |
| 1.95       | .0768   |
| 5/64       | .0781   |
| 47         | .0785   |
| 2.00       | .0787   |
|            |         |
| 2.05       | .0807   |
| <u>46</u>  | .0810   |
| 45         | .0820   |
| 2.10       | .0827   |
| 2.15       | .0846   |
| 44         | .0860   |
| 2.20       | .0866   |
| 2.25       | .0886   |
| 43         | .0890   |
|            |         |
| 2.30       | .0906   |
| 2.35       | .0925   |
| 42         | .0935   |
| 3/32       | .0938   |
| 2.40       | .0945   |
| 41         | .0960   |
| 2.45       | .0965   |
| 40         | .0980   |
| 2.50       | .0984   |
| 39         | .0904   |
|            |         |
| 38         | .1015   |
| 2.60       | .1024   |
| 37         | .1040   |
| 2.70       | .1063   |
| 36         | .1065   |
| 7/64       | .1094   |
| 35         | .1100   |
| 2.80       | .1102   |
| 34         | .1110   |
| 33         | .1130   |
|            | 11100   |
| 2.90       | .1142   |
| 32         | .1160   |
| 3.00       | .1181   |
| 31         | .1200   |
| 3.10       | .1220   |
| 1/8        | .1250   |
| 3.20       | .1260   |
| 30         | .1285   |
|            |         |
| 3.30       | .1299   |
| 3.40       | .1339   |
| 29         | .1360   |
| 3.50       | .1378   |
| 28         | .1405   |
| 9/64       | .1406   |
|            |         |
| 3.60       | .1417   |

27

.1440

| Drill Size                                                                                    | Decimal                                                                                                           |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 3.70                                                                                          | .1457                                                                                                             |
| 26                                                                                            | .1470                                                                                                             |
| 25                                                                                            | .1495                                                                                                             |
| 3.80                                                                                          | .1496                                                                                                             |
| 24                                                                                            | .1520                                                                                                             |
| 3.90                                                                                          | .1535                                                                                                             |
| 23                                                                                            | .1540                                                                                                             |
| 5/32                                                                                          | .1562                                                                                                             |
|                                                                                               |                                                                                                                   |
| 22                                                                                            | .1570                                                                                                             |
| 4.00                                                                                          | .1575                                                                                                             |
| 21                                                                                            | .1590                                                                                                             |
| 20                                                                                            | .1610                                                                                                             |
| 4.10                                                                                          | .1614                                                                                                             |
| 4.20                                                                                          | .1654                                                                                                             |
| 19                                                                                            | .1660                                                                                                             |
| 4.30                                                                                          | .1693                                                                                                             |
| 18                                                                                            | .1695                                                                                                             |
|                                                                                               |                                                                                                                   |
| 11/64                                                                                         | .1719                                                                                                             |
| 17                                                                                            | .1730                                                                                                             |
| 4.40                                                                                          | .1732                                                                                                             |
| 16                                                                                            | .1770                                                                                                             |
| 4.50                                                                                          | .1772                                                                                                             |
| 15                                                                                            | .1800                                                                                                             |
| 4.60                                                                                          | .1811                                                                                                             |
| 14                                                                                            |                                                                                                                   |
|                                                                                               | .1820                                                                                                             |
| 13                                                                                            | .1850                                                                                                             |
| 4.70                                                                                          | .1850                                                                                                             |
| 3/16                                                                                          | .1875                                                                                                             |
| 12                                                                                            | .1890                                                                                                             |
| 4.80                                                                                          | .1890                                                                                                             |
| 11                                                                                            | .1910                                                                                                             |
| 4.90                                                                                          | .1929                                                                                                             |
| l                                                                                             | .1935                                                                                                             |
| 10                                                                                            |                                                                                                                   |
| 9                                                                                             | .1960                                                                                                             |
| 5.00                                                                                          | .1969                                                                                                             |
| 8                                                                                             | .1990                                                                                                             |
| 5.10                                                                                          | .2008                                                                                                             |
| 7                                                                                             | .2010                                                                                                             |
| 13/64                                                                                         | .2031                                                                                                             |
| 6                                                                                             | .2040                                                                                                             |
| 5.20                                                                                          | .2047                                                                                                             |
| 5                                                                                             | .2055                                                                                                             |
|                                                                                               |                                                                                                                   |
| 5.30                                                                                          | .2087                                                                                                             |
| 4                                                                                             | .2090                                                                                                             |
| 5.40                                                                                          | .2126                                                                                                             |
| 3                                                                                             | .2130                                                                                                             |
| 5.50                                                                                          | .2165                                                                                                             |
| 7/32                                                                                          | .2188                                                                                                             |
| 5.60                                                                                          | .2205                                                                                                             |
| 2                                                                                             | .2210                                                                                                             |
|                                                                                               |                                                                                                                   |
| 5.70                                                                                          | .2244                                                                                                             |
| 1                                                                                             | .2280                                                                                                             |
|                                                                                               |                                                                                                                   |
| 5.80                                                                                          | .2283                                                                                                             |
| 5.90                                                                                          | .2323                                                                                                             |
|                                                                                               |                                                                                                                   |
| 5.90                                                                                          | .2323                                                                                                             |
| 5.90<br>A                                                                                     | .2323<br>.2340                                                                                                    |
| 5.90<br>A<br>15/64<br>6.00                                                                    | .2323<br>.2340<br>.2344<br>.2362                                                                                  |
| 5.90<br>A<br>15/64<br>6.00<br>B                                                               | .2323<br>.2340<br>.2344<br>.2362<br>.2380                                                                         |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10                                                       | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402                                                                |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10<br>C                                                  | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402<br>.2420                                                       |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10<br>C<br>6.20                                          | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402<br>.2420<br>.2441                                              |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10<br>C                                                  | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402<br>.2420                                                       |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10<br>C<br>6.20                                          | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402<br>.2420<br>.2441                                              |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10<br>C<br>6.20<br>D                                     | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402<br>.2420<br>.2420<br>.2441<br>.2460                            |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10<br>C<br>6.20<br>D<br>6.30<br>1/4                      | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402<br>.2420<br>.2441<br>.2460<br>.2480<br>.2500                   |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10<br>C<br>6.20<br>D<br>6.30<br>1/4<br>E                 | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402<br>.2420<br>.2441<br>.2460<br>.2480<br>.2500                   |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10<br>C<br>6.20<br>D<br>6.30<br>1/4<br>E<br>6.40         | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402<br>.2420<br>.2441<br>.2460<br>.2480<br>.2500<br>.2500          |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10<br>C<br>6.20<br>D<br>6.30<br>1/4<br>E<br>6.40<br>6.50 | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402<br>.2420<br>.2441<br>.2460<br>.2480<br>.2500<br>.2500<br>.2520 |
| 5.90<br>A<br>15/64<br>6.00<br>B<br>6.10<br>C<br>6.20<br>D<br>6.30<br>1/4<br>E<br>6.40         | .2323<br>.2340<br>.2344<br>.2362<br>.2380<br>.2402<br>.2420<br>.2441<br>.2460<br>.2480<br>.2500<br>.2500          |

| Drill Size            | Decimal                |
|-----------------------|------------------------|
| G                     | .2610                  |
| 6.70                  | .2638                  |
| 17/64                 | .2656                  |
| H                     | .2660                  |
| 6.80                  | .2677                  |
| 6.90                  | .2717                  |
| 0.30<br>I             | .2720                  |
| 7.00                  | .2756                  |
| J .00                 | .2770                  |
| 7.10                  | .2795                  |
| K                     | .2810                  |
| 9/32                  | .2812                  |
| 7.20                  | .2835                  |
| 7.30                  | .2874                  |
| L                     | .2900                  |
| 7.40                  | .2913                  |
| M                     | .2950                  |
| 7.50                  | .2953                  |
| 19/64                 | .2969                  |
| 7.60                  | .2992                  |
| N                     | .3020                  |
| 7.70                  | .3031                  |
| 7.80                  | .3071                  |
| 7.90                  | .3110                  |
| 5/16                  | .3125                  |
| 8.00                  | .3150                  |
| 0                     | .3160                  |
| 8.10                  | .3189                  |
| 8.20                  | .3228                  |
| P                     | .3230                  |
| 8.30                  | .3268                  |
| 21/64                 | .3281                  |
| 8.40                  | .3307                  |
| Q                     | .3320                  |
| 8.50                  | .3346                  |
| 8.60                  | .3386                  |
| R                     | .3390                  |
| 8.70                  | .3425                  |
| 11/32                 | .3438                  |
| 8.80                  | .3465                  |
| S                     | .3480                  |
| 8.90                  | .3504                  |
| 9.00                  | .3543                  |
| Т                     | .3580                  |
| 9.10                  | .3583                  |
| 23/64                 | .3594                  |
| 9.20                  | .3622                  |
| 9.30                  | .3661                  |
| U                     | .3680                  |
| 9.40                  | .3701                  |
| 9.50                  | .3740                  |
| 3/8                   | .3750                  |
| V                     | .3770                  |
| 9.60                  | .3780                  |
| 9.70                  | .3819                  |
| 9.80                  | .3858                  |
| W                     | .3860                  |
| 9.90                  | .3998                  |
| 25/64                 | .3906                  |
| 10.00                 | .3937                  |
| X<br>10.20            | .3970                  |
| 10.20                 | .4016                  |
| Y<br>10.20            | .4040                  |
| 10.30<br><b>13/32</b> | .4055                  |
| 73/32<br>Z            | . <b>4062</b><br>.4130 |
| l                     | .4130                  |
| 10.50<br><b>27/64</b> | .4134                  |
| 10.80                 | .4219                  |
| 10.00                 | .+202                  |

| Drill Size     | Decimal                |
|----------------|------------------------|
| 11.00          | .4331                  |
| 7/16           | .4375                  |
| 11.20          | .4409                  |
| 11.50          | .4528                  |
| 29/64          | .4531                  |
| 11.80          | .4646                  |
| 15/32          | .4688                  |
| 12.00          | .4724                  |
| 12.20          | .4803                  |
| 31/64          | .4844                  |
| 12.50<br>1/2   | .4921                  |
| 13.00          | . <b>5000</b><br>.5118 |
| 33/64          | .5156                  |
| 17/32          | .5312                  |
| 13.50          | .5315                  |
| 35/64          | .5469                  |
| 14.00          | .5512                  |
| 9/16           | .5625                  |
| 14.50          | .5709                  |
| 37/64          | .5781                  |
| 15.00          | .5906                  |
| 19/32          | .5938                  |
| 39/64          | .6094                  |
| 15.50          | .6102                  |
| 5/8            | .6250                  |
| 16.00          | .6299                  |
| 41/64          | .6406                  |
| 16.50          | .6495                  |
| 21/32          | .5452                  |
| 17.00          | .6693                  |
| 43/64          | .6719                  |
| 11/16          | .6875                  |
| 17.50<br>45/64 | .6890<br>.7031         |
| 18.00          | .7087                  |
| 23/32          | .7188                  |
| 18.50          | .7283                  |
| 47/64          | .7344                  |
| 19.00          | .7480                  |
| 3/4            | .7500                  |
| 49/64          | .7656                  |
| 19.50          | .7677                  |
| 25/32          | .7812                  |
| 20.00          | .7874                  |
| 51/64          | .7969                  |
| 20.50          | .8071                  |
| 13/16          | .8125                  |
| 21.00          | .8268                  |
| 53/64          | .8281                  |
| 27/32          | .8438                  |
| 21.50          | .8465                  |
| 55/64          | .8594                  |
| 22.00          | .8661                  |
| 7/8            | .8750                  |
| 22.50          | .8858                  |
| 57/64          | .8906                  |
| 23.00          | .9055                  |
| 29/32<br>59/64 | .9062<br>.9219         |
| 23.50          | .9252                  |
| 15/16          | .9252                  |
| 24.00          | .9449                  |
| 61/64          | .9531                  |
| 24.50          | .9646                  |
| 31/32          | .9688                  |
| 25.00          | .9843                  |
| 63/64          | .9844                  |
| 1              | 1.000                  |
|                |                        |





### **ASTM STANDARDS**

ASTM (The American Society for Testing and Materials), founded in 1898, is a scientific and technical organization formed for "the development of standards on characteristics and performance of materials, products, systems, and services; and the promotion of related knowledge." ASTM is the world's largest source of voluntary consensus standards.

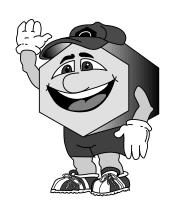
| STANI          | DARDS AND SPECIFICATIONS                                                                                                                    |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| A29/<br>A29M   | Steel Bars, Carbon and Alloy, Hot-Wrought and Cold-finished                                                                                 |
| A31            | Steel Rivets and Bars for Rivets, Pressure Vessels                                                                                          |
| A36            | Structural Steel                                                                                                                            |
| A90            | Test method for Weight of Coating on Zinc-Coated (Galvanized) Iron and Steel Articles                                                       |
| A31            | Structural Steel for Ships                                                                                                                  |
| A143           | Safeguarding Against Embrittlement of Hot-Dip<br>Galvanized Structural Steel Products and Procedure<br>for Detecting Embrittlement          |
| A153           | Zinc Coating (Hot-Dip) on Iron and Steel Hardware (see Page B-165)                                                                          |
| A183           | Carbon Steel Track Bolts and Nuts                                                                                                           |
| A193/<br>A193M | Alloy Steel and Stainless Steel Bolting Materials for<br>High-Temperature Service                                                           |
| A194/<br>A194M | Carbon and Alloy Steel Nuts for Bolts for High-<br>Pressure and High-Temperature Service                                                    |
| A239           | Test Method for Locating the Thinnest Spot in a Zinc (Galvanized) Coating on Iron or Steel Articles by the Preece Test (Copper Sulfate Dip) |
| A242           | High-Strength Low-Alloy Structural Steel                                                                                                    |
| A262           | Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels                                                             |
| A276           | Stainless and Heat-Resisting Steel Bars and Shapes                                                                                          |
| A307           | Carbon Steel Externally Threaded Standard Fasteners                                                                                         |
| A320/<br>A320M | Alloy Steel Bolting Materials for Low-Temperature Service                                                                                   |
| A325           | High Strength Bolts for Structural Steel Joints                                                                                             |
| A342           | Test Methods for Permeability of Feebly Magnetic Materials                                                                                  |
| A353/<br>A353M | Pressure Vessel Plates, Alloy Steel, 9 Percent Nickel, Double-Normalized and Tempered                                                       |
| A354           | Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners                                                     |
|                |                                                                                                                                             |

| _ |                |                                                                                                                                        |
|---|----------------|----------------------------------------------------------------------------------------------------------------------------------------|
|   | A380           | Cleaning and Descaling Stainless Steel Parts, Equipment, and Systems                                                                   |
|   | A385           | Providing High-Quality Zinc Coatings (Hot-Dip)                                                                                         |
|   | A394           | Zinc-Coated Steel Transmission Tower Bolts                                                                                             |
|   | A437/<br>A437M | Alloy Steel Turbine-Type Bolting Material Specially<br>Heat Treated for High-Temperature Service                                       |
|   | A449           | Quenched and Tempered Steel Bolts and Studs                                                                                            |
|   | A453/<br>A453M | Bolting Materials, High-Temperature, 50 to 120 ksi<br>Yield Strength, with Expansion Coefficients Compa-<br>rable to Austenitic Steels |
|   | A484/<br>A484M | Stainless and Heat-Resisting Wrought Steel Products (Except Wire)                                                                      |
|   | A489           | Carbon Steel Eyebolts                                                                                                                  |
|   | A490           | Heat-Treated Steel Structural Bolts, 150 ksi Tensile Strength                                                                          |
|   | A493F          | Stainless and Heat-Resisting Steel for Cold Heading and Cold Forging                                                                   |
|   | A502           | Steel Structural Rivets                                                                                                                |
|   | A540/<br>A540M | Alloy Steel Bolting Materials for Special Applications                                                                                 |
|   | A555/<br>A555M | Stainless and Heat-Resisting Steel Wire                                                                                                |
|   | A563           | Carbon and Alloy Steel Nuts                                                                                                            |
|   | A564           | Hot-Rolled and Cold-Finished Age-Hardening<br>Stainless and Heat-Resisting Steel Bars, Wire, and<br>Shapes                             |
|   | A568           | Steel, Carbon and High-Strength Low-Alloy<br>Hot-Rolled and Cold-Rolled Sheets                                                         |
|   | A574           | Alloy Steel Socket-Head Cap Screws                                                                                                     |
|   | A582           | Free-Machining Stainless and Heat-Resisting Steel Bars, Hot-Rolled or Cold-Finished                                                    |
|   | A588/<br>A588M | High-Strength Low-Alloy Structural Steel with 50 ksi<br>Minimum Yield Point to 4 in. Thick                                             |
|   | A591           | Steel Sheet, Cold-Rolled, Electrolytic Zinc-Coated                                                                                     |
|   | A676           | Hot-dipped Aluminum Coatings on Ferrous Articles                                                                                       |
|   | A687           | High-Strength Nonheaded Steel Bolts and Studs                                                                                          |
|   | A706           | Low-Alloy Steel Deformed Bars for Concrete<br>Reinforcement                                                                            |
|   | A709           | Structural Steel for Bridges                                                                                                           |
|   | A751           | Methods, Practices, and Definitions for Chemical Analysis of Steel Products                                                            |
|   | A788           | Steel Forgings                                                                                                                         |
|   | B6             | Zinc (Slab Zinc)                                                                                                                       |
|   | B16            | Free-Cutting Brass Rod, Bar, and Shapes for Use in Screw Machines                                                                      |
|   |                |                                                                                                                                        |

Methods and Definitions for Mechanical Testing of

A370

Steel Products

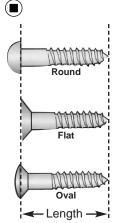



| B99               | Copper-Silicon Alloy Wire for General Purposes                                             | B568 | Measurement of Coating Thickness by X-Ray                                                              |
|-------------------|--------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------|
| B117              | Method of Salt Spray (Fog) Testing                                                         |      | Spectrometry                                                                                           |
| B134              | Brass Wire                                                                                 | B571 | Test Methods for Adhesion of Metallic Coatings                                                         |
| B151              | Copper-Nickel-zinc Alloy (Nickel Silver) and Copper-Nickel Rod and Bar                     | B602 | Attribute Sampling of Electrodeposited Metallic Coatings and Related Finishes                          |
| B154              | Method of Mercurous Nitrate Test for Copper and                                            | B633 | Electrodeposited Coatings of Zinc on Iron and Steel                                                    |
|                   | Copper Alloys                                                                              | B695 | Coatings of Zinc Mechanically Deposited on Iron and                                                    |
| B159              | Phosphor Bronze Wire                                                                       |      | Steel                                                                                                  |
| B183              | Preparation of Low Carbon Steel for Electroplating                                         | B696 | Coatings of Cadmium Mechanically Deposited on Iron and Steel                                           |
| B193              | Test Method for Resistivity of Electrical Conductor<br>Materials                           | B697 | Guidelines for Selection of Sampling Plans for<br>Inspection of Electrodeposited Metallic Coatings and |
| B201              | Test Chromate Coatings on Zinc and Cadmium                                                 |      | Related Finishes on Products                                                                           |
|                   | Surfaces                                                                                   | F432 | Roof and Rock Bolts and Accessories                                                                    |
| B211              | Aluminum Alloy Bars, Rods, and Wire                                                        | F436 | Hardened Steel Washers                                                                                 |
| B242/<br>B242M    | Preparation of High-Carbon Steel for Electroplating                                        | F467 | Nonferrous Nuts for General Use                                                                        |
| B244 Meas<br>on A | Measurement of Thickness of Anodic Coatings                                                | F468 | Nonferrous Bolts, Hex Cap Screws, and Studs for General Use                                            |
|                   | on Aluminum and Other Nonconductive Coatings on Nonmagnetic Basis Metals with Eddy-Current |      | Alloy Steel Eyebolts                                                                                   |
|                   | Instruments                                                                                |      | Stainless Steel Bolts, Hex Cap Screws, and Studs                                                       |
| B254              | Preparation of and Electroplating on Stainless Steel                                       | F594 | Stainless Steel Nuts                                                                                   |
| B320              | Preparation of Iron Castings for Electroplating                                            | F606 | Conducting Tests to Determine the Mechanical                                                           |
| B322              | Cleaning Metals Prior to Electroplating                                                    |      | Properties of Externally and Internally Threaded Fasteners, Washers, and Rivets                        |
| B342              | Test Method for Electrical Conductivity by Use of Eddy Current                             | F788 | Surface Discontinuities of Bolts, Screws, and Studs, Inch and Metric                                   |
| B374              | Definitions of Terms Relating to Electroplating                                            | F812 | Surface Discontinuities of Nuts, Inch and Metric                                                       |
| B487              | Measurement of Metal and Oxide Coating Thick-                                              |      |                                                                                                        |
|                   | nesses by Microscopical Examination of a Cross<br>Section                                  | F835 | Alloy Steel Socket Button and Flat Countersunk<br>Head Cap Screws                                      |
| B499              | Measurement of Coating Thicknesses by the                                                  | F837 | Stainless Steel Socket Head Cap Screws                                                                 |
|                   | Magnetic Method: Nonmagnetic Coatings on Magnetic Basis Metals                             | F844 | Washers, Plain (Flat), Unhardened for General Use                                                      |
| B504              | Measurement of Thickness of Metallic Coatings by the Coulometric Method                    | F879 | Stainless Steel Socket Button and Flat Countersunk<br>Head Cap Screws                                  |
| B565              | Shear Testing of Aluminum-Alloy Rivets and Cold-                                           | F880 | Stainless Steel Socket Set Screws                                                                      |
|                   | Heading Wire and Rods                                                                      | F901 | Aluminum Transmission Tower Bolts and Nuts                                                             |
| B567              | Measurement of Coating Thickness by the Beta                                               | F912 | Alloy Steel Socket Set Screws                                                                          |
|                   | Backscatter Method                                                                         |      | Compressible-Washer-Type Direct Tension Indicators for Use with Structural Fasteners                   |

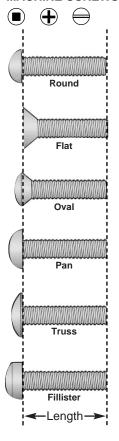
# **QUOTE**

A bank is a place where they lend you an umbrella in fair weather and ask for it back again when it begins to rain.

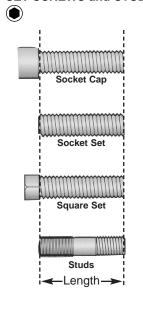
ROBERT FROST



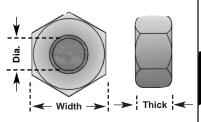




### HE BOLT SUPPLY HOUSE LTD

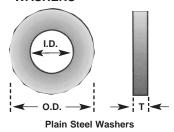
### **FASTENER MEASUREMENT CHART**

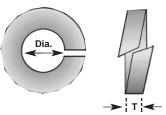






**MACHINE SCREWS** 




**SET SCREWS and STUDS** 




**HEXAGON NUTS** 



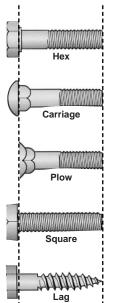
**WASHERS** 





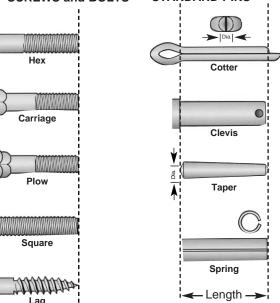
**Lock Washers** 

### **TAPPING SCREWS**

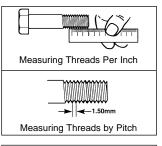

Flat










Length→

**CAP SCREWS and BOLTS STANDARD PINS** 



**Measuring Threads** 







### **SELF-TAPPING SCREWS - HEAD STYLES**

| Schematic | Head<br>Style              | Description                                                                                                                                                                                                                                      | Applications / Advantages                                                                                                                                                                                    |  |
|-----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           | Bugle                      | A countersunk head with a flat top surface and a concave underhead bearing surface.                                                                                                                                                              | Designed specifically for use in drywall. Distributes bearing stress over a wider area than flat heads.                                                                                                      |  |
|           | Pan                        | Slotted pan heads have a flat or gently rounded top surface, cylindrical sides and a flat bearing surface. Phillips, Torx, and square pan heads have a rounded top surface, cylindrical sides and a flat bearing surface.                        | For general applications. Can be substituted in most applications for round, truss or bearing heads.                                                                                                         |  |
|           | Flat 82°                   | A countersunk head with a flat top surface and a coneshaped bearing surface with a head angle of approximately 82°.                                                                                                                              | Used in applications where protrusion of the fastener above the mating surface is unacceptable. Use a protrusion gauge when measuring head height.                                                           |  |
|           | Flat Similar to a undercut |                                                                                                                                                                                                                                                  | Standard for short lengths because it allows greater length of threads. Also avoids transition fillet and assembly interference.                                                                             |  |
|           | Indented Hex               | Has an indented top surface, six flat sides, and a flat bearing surface.                                                                                                                                                                         | Preferred in high volume assembly where pneumatic equipment is used to drive the screw.  Can transmit significantly higher tightening torque levels than other head styles.                                  |  |
|           | Indented Hex<br>Washer     | Has an indented top surface, six flat sides with a flat washer which projects beyond the sides and provides a flat bearing surface. The washer and hex head are formed together as one piece                                                     | Increased bearing area reduces likelihood of crushing mating surfaces.                                                                                                                                       |  |
|           | Serrated Hex<br>Washer     | Same as an indented Hex Washer head but with serrations formed into the bearing surface on the same nominal size                                                                                                                                 | Serration geometry is oriented to resist loosening. Also slows the screw at the point of engagement with the mating piece of sheet metal so as to minimize stripping.                                        |  |
|           | Truss                      | Has a low rounded top with a flat bearing surface greater in area than a round-head screw of the same nominal size                                                                                                                               | Weaker than pan or round heads but preferred in applications where minimal clearance exists above the head. Truss profile provides a trim, finished appearance.                                              |  |
|           | Wafer                      | A countersunk head with a flat top surface and a cone-shaped bearing surface. The wafer's 70° conical underhead area does not extend to the outer edge of the head, providing a bearing surface of 16° around the circumference of the underhead | Preferred head style for Type-CSD self-drilling screws. Provides the necessary bearing surface and flush fit in wood and softer materials. The head/shank fillet contoured to strengthen the underhead area. |  |
|           | Oval                       | A countersunk head with a rounded top surface and a cone-shaped bearing surface of approximately 82°                                                                                                                                             | Preferred over a flat head in conical applications, or when a more decorative finished look is desired. The countersunk surface nests into mating countersunk application sites.                             |  |
|           | Round<br>(U-drive)         | Has a semi-elliptical top surface<br>and a flat bearing<br>surface                                                                                                                                                                               | Standard head style for drive screws. Provides efficient non-torque fastening for high-speed assembly.                                                                                                       |  |

### **DRIVE TYPES**

| Schematic     |                                                                                         |                                                                                                                                   |                                                                                                                               |                                                                                               |                                                                                                                        |                                                                                                      |
|---------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Drive<br>Type | Phillips                                                                                | Slotted                                                                                                                           | Phillips/Sq. Drive<br>Combination                                                                                             | Hex / Slotted-hex                                                                             | Torx                                                                                                                   | Square                                                                                               |
| Uses          | Increases productivity<br>with excellent torque<br>transmission and<br>resists cam-out. | Accepts standard blade<br>screwdriver. Requires<br>less downward pressure<br>to drive parts than those<br>with recessed openings. | Accepts Phillips and<br>square drive<br>screwdrivers. Used<br>when fastener is<br>expected to be backed<br>out several times. | Accepts hex wrench.<br>Slotted drive is added to<br>make it easier to remove<br>the fastener. | Positive-engaging,<br>fast-locating method<br>which transmits drive<br>torque with less required<br>downward pressure. | Provides good control in<br>driving. Always use a<br>driver bit of proper size<br>in good condition. |



### **MACHINE SCREWS - HEAD STYLES**

| Schematic                              | Head<br>Style          | Description                                                                                                                                                                                              | Applications /<br>Advantages                                                                                                                                                      |  |
|----------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                        | Pan                    | Slotted pan heads have a flat or gently rounded top surface, cylindrical sides and a flat bearing surface. Phillips and torx pan heads have a rounded top, cylindrical sides and a flat bearing surface. | Has a general purpose bearing area. Can be substituted in most applications for round, truss or binding heads.                                                                    |  |
|                                        | Binding<br>Undercut    | Has a rounded top surface and slightly tapered sides. the bearing surface is flat with an annular undercut adjacent to the shank.                                                                        | Preferred design for making a firm electrical connection.                                                                                                                         |  |
|                                        | Flat 82°               | A countersunk head with a flat top surface and a cone-shaped bearing surface with a head angle of approximately 82°.                                                                                     | Used in applications where protrusion of the fastener above the mating surface is unacceptable. Use a protrusion gauge when measuring head height.                                |  |
|                                        | Flat<br>Undercut       | Similar to an 82* flat head except that the head is undercut to 70% of its normal side height.                                                                                                           | Standard for short lengths because it allows greater length of threads. Also avoids transition fillet and assembly interference.                                                  |  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Flat 100°              | A countersunk head with a flat top surface and a cone-shaped bearing surface with a head angle of approximately 100°.                                                                                    | Preferred over an 82° flat head when fastening in soft materials – the 100° countersunk head distributes pressure over a larger surface area.                                     |  |
|                                        | Fillister              | Has a rounded top surface, cylindrical sides, and a flat bearing surface. The greater side height is what distinguishes a fillister head from a pan head.                                                | Preferred style for use in counterbored holes.                                                                                                                                    |  |
|                                        | Indented<br>Hex        | Has a top surface, six flat sides, and a flat bearing surface.                                                                                                                                           | Preferred in high volume assembly where pneumatic equipment is used to drive the screw.  Can transmit significantly higher tightening torque levels than other head styles.       |  |
|                                        | Indented Hex<br>Washer | Has an indented top surface, six flat sides and a flat washer which projects beyond the sides and provides a flat bearing surface. The washer and hex head are formed together as one piece.             | Offers greater protection to the mating surface than a standard indented hex head. Increases bearing area reduces likelihood of crushing mating surfaces.                         |  |
|                                        | Truss                  | Has a low rounded top surface with a flat bearing surface greater in area than a round-head screw of the same nominal size.                                                                              | Weaker than pan or round heads but preferred in applications where minimal clearance exists above the head. Truss profile provides a trim, finished assembly appearance.          |  |
|                                        | Oval                   | A countersunk head with a rounded top surface and a cone-shaped bearing surface of approximately 82°.                                                                                                    | Preferred over a flat head in conical applications, or when a more decorative finished look is desired.  The countersunk surface nests into mating countersunk application sites. |  |
|                                        | Round                  | Has a semi-elliptical top surface and a flat bearing surface                                                                                                                                             | Sometimes preferred over pan head for its smooth surface and appearance.                                                                                                          |  |

### **DRIVE TYPES**

| Schematic     |                                                                                                                                        | ( <del>f</del> )                                                             |                                                                                                                                                            |                                                                                                                                 |                                                                                               | 0                                                                                                                  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Drive<br>Type | Square                                                                                                                                 | Phillips                                                                     | Slotted                                                                                                                                                    | Phillips/Sq. Drive<br>Combination                                                                                               | Hex /<br>Slotted-hex                                                                          | Torx                                                                                                               |
| Uses          | Most recommended drive<br>type. Provides good con-<br>trol in driving. Always use<br>a driver bit of proper size<br>in good condition. | Provides good control in driving. Always use a driver bit in good condition. | Accepts standard blade<br>screwdrivers. Requires<br>less downward pressure<br>to drive slotted parts<br>than it does those with<br>cross-dressed openings. | Accepts Phillips and square drive screwdrivers. Often used when fastener is expected to be driven and backed-out several times. | Accepts hex wrench.<br>Slotted drive is added<br>to make it easier to<br>remove the fastener. | Positive-engaging,<br>fast-locating method<br>of transmitting drive<br>torque and optimizing<br>worker efficiency. |



### **BOLT THREADS AND THREAD LENGTHS**

## THREADS - MACHINE SCREW AND BOLT SIZES

Number of Threads per Inch – Unified Standard Coarse Thread Series, Class 2A Fit, recommended for general bolt use.

| Diameter | <b>UNC Coarse</b> | UNF Fine | Diameter | <b>UNC Coarse</b> | UNF Fine |
|----------|-------------------|----------|----------|-------------------|----------|
| of Bolt  | Thread            | Thread   | of Bolt  | Thread            | Thread   |
| (ln.)    | Series            | Series   | (ln.)    | Series            | Series   |
| No. 0    | _                 | 80       | 9/16     | 12                | 18       |
| No. 1    | 64                | 72       | 5/8      | 11                | 18       |
| No. 2    | 56                | 64       | 3/4      | 10                | 16       |
| No. 3    | 48                | 56       | 7/8      | 9                 | 14       |
| No. 4    | 40                | 48       | 1        | 8                 | 14 (12)* |
| No. 5    | 40                | 44       | 1-1/8    | 7                 | 12       |
| No. 6    | 32                | 40       | 1-1/4    | 7                 | 12       |
| No. 8    | 32                | 36       | 1-3/8    | 6                 | 12       |
| No. 10   | 24                | 32       | 1-1/2    | 6                 | 12       |
| No. 12   | 24                | 28       | 1-3/4    | 5                 | _        |
| 1/4      | 20                | 28       | 2        | 4-1/2             | _        |
| 5/16     | 18                | 24       | 2-1/4    | 4-1/2             | _        |
| 3/8      | 16                | 24       | 2-1/2    | 4                 | _        |
| 7/16     | 14                | 20       | 2-3/4    | 4                 | _        |
| 1/2      | 13                | 20       | 3        | 4                 | _        |

\*Indicates number of threads per inch for Unified Fine (1"-12 thread is U.N.F. standard. However 1"-14 thread is popular demand and generally stocked in place of 1"-12.)

### **THREAD LENGTHS**

All Standard Except Lag Screws

### **Thread Length Formula:**

For bolts 6" and shorter – twice the diameter plus 1/4". (2D + 1/4") Longer than 6" – twice the diameter plus 1/2". (2D + 1/2"). When bolts are short for formula thread length, thread will extend as close to head or shoulder as practical. In actual production, thread lengths may be longer than the formula thread lengths.

| Diameter of Bolt | 6" and<br>Shorter | Longer<br>Than 6" | Diameter of Bolt | 6" and<br>Shorter | Longer<br>Than 6" |
|------------------|-------------------|-------------------|------------------|-------------------|-------------------|
| (ln.)            | (in.)             | (in.)             | (ln.)            | (in.)             | (in.)             |
| No. 10           | 5/8               | 7/8               | 1                | 2-1/4             | 2-1/2             |
| 1/4              | 3/4               | 1                 | 1-1/8            | 2-1/2             | 2-3/4             |
| 5/16             | 7/8               | 1-1/8             | 1-1/4            | 2-3/4             | 3                 |
| 3/8              | 1                 | 1-1/4             | 1-3/8            | 3                 | 3-1/4             |
| 7/16             | 1-1/8             | 1-3/8             | 1-1/2            | 3-1/4             | 3-1/2             |
| 1/2              | 1-1/4             | 1-1/2             | 1-5/8            | 3-1/2             | 3-3/4             |
| 5/8              | 1-1/2             | 1-3/4             | 1-3/4            | 3-3/4             | 4                 |
| 3/4              | 1-3/4             | 2                 | 1-7/8            | 4                 | 4-1/4             |
| 7/8              | 2                 | 2-1/4             | 2                | 4-1/4             | 4-1/2             |

### **WASHERS AND HEX NUTS**





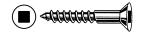
|        |      |         |       |       |             |       |             | USS WASHERS   | SAE WASHERS   |       |         |
|--------|------|---------|-------|-------|-------------|-------|-------------|---------------|---------------|-------|---------|
| Length |      | HEX NUT | rs    | USS \ | WASHERS     | SAE \ | VASHERS     | Qty./100 lbs. | Qty./100 lbs. | LOCKY | VASHERS |
| (in.)  | Pkg. | Case    | Bulk  | Pkg.  | Bulk (lbs.) | Pkg.  | Bulk (lbs.) | (approx.)     | (approx.)     | Pkg.  | Case    |
| #6     | 100  | 2000    | 15000 | 100   | 50          |       |             |               |               | 100   | 7500    |
| #8     | 100  | 2000    | 15000 | 100   | 50          |       |             |               |               | 100   | 7500    |
| #10    | 100  | 2000    | 15000 | 100   | 50          |       |             | 29400         |               | 100   | 7500    |
| 1/4    | 100  | 2000    | 5500  | 100   | 40          | 100   | 40          | 16200         | 24400         | 100   | 7500    |
| 5/16   | 100  | 2000    | 3600  | 100   | 40          | 100   | 40          | 9600          | 21200         | 100   | 7500    |
| 3/8    | 100  | 1500    | 250   | 100   | 40          | 100   | 40          | 7460          | 15140         | 100   | 7500    |
| 7/16   | 50   | 800     | 1400  | 50    | 40          | 50    | 40          | 3800          | 11360         | 50    | 3750    |
| 1/2    | 50   | 800     | 1000  | 50    | 40          | 50    | 40          | 2740          | 5900          | 50    | 2500    |
| 9/16   | 25   | 300     | 650   | 25    | 40          | 25    | 40          | 2300          | 5740          | 25    | 1250    |
| 5/8    | 25   | 300     | 540   | 25    | 40          | 25    | 40          | 1290          | 3880          | 25    | 1250    |
| 3/4    | 20   |         | 325   | 20    | 40          | 20    | 40          | 1000          | 2360          | 20    | 1000    |
| 7/8    | 20   |         | 200   | 20    | 40          | 20    | 40          | 720           | 1720          | 20    | 780     |
| 1      | 20   |         | 135   | 20    | 40          | 20    | 40          | 580           | 1310          | 20    | 40      |
| 1-1/8  | 15   |         | 95    | 15    | 40          |       |             | 490           |               | 15    | 300     |
| 1-1/4  | 15   |         | 65    | 15    | 40          |       |             | 520           |               | 15    | 300     |
| 1-3/8  | 10   |         | 50    | 10    | 40          |       |             | 360           |               | 10    | 150     |
| 1-1/2  | 10   |         | 40    | 10    | 40          |       |             | 340           |               | 10    | 150     |
| 1-5/8  |      |         | 30    | 10    | 40          |       |             | 250           |               |       |         |
| 1-3/4  |      |         | 23    | 10    | 40          |       |             | 230           |               |       |         |
| 2      |      |         | 15    | 10    | 40          |       |             | 180           |               |       |         |
| 2-1/4  |      |         | 10    |       |             |       |             |               |               |       |         |
| 2-1/2  |      |         | 8     |       |             |       |             |               |               |       |         |
| 2-3/4  |      |         | 6     |       |             |       |             |               |               |       |         |
| 3      |      |         | 5     |       |             |       |             |               |               |       |         |



When I am working on a problem, I never think about beauty. I think only about how to solve the problem. But when I have finished, if the solution is not beautiful, I know it is wrong.

BUCKMINSTER FULLER




### **BULK GRADE 5 AND 8 CAPSCREWS**



|              |      |       |      |       |      |       | Diamet | er   |      |    |        |        |        |
|--------------|------|-------|------|-------|------|-------|--------|------|------|----|--------|--------|--------|
| Length (in.) | 1/4" | 5/16" | 3/8" | 7/16" | 1/2" | 9/16" | 5/8"   | 3/4" | 7/8" | 1" | 1-1/8" | 1-1/4" | 1-1/2" |
| 1/2          | 3300 | 1950  | 1300 |       |      |       |        |      |      |    |        |        |        |
| 5/8          | 3000 | 1800  | 1200 |       |      |       |        |      |      |    |        |        |        |
| 3/4          | 2700 | 1650  | 1100 | 750   | 475  |       |        |      |      |    |        |        |        |
| 1            | 2200 | 1400  | 900  | 650   | 400  | 350   | 250    | 150  |      |    |        |        |        |
| 1-1/4        | 1800 | 1100  | 800  | 550   | 375  | 300   | 225    | 140  |      |    |        |        |        |
| 1-1/2        | 1600 | 1000  | 675  | 500   | 300  | 300   | 200    | 125  | 85   | 55 |        |        |        |
| 1-3/4        | 1400 | 850   | 600  | 450   | 275  | 250   | 175    | 120  | 80   | 55 |        |        |        |
| 2            | 1200 | 800   | 550  | 400   | 250  | 225   | 175    | 100  | 75   | 50 | 40     | 30     |        |
| 2-1/4        | 1000 | 700   | 450  | 350   | 225  | 200   | 150    | 100  | 70   | 50 |        |        |        |
| 2-1/2        | 900  | 600   | 400  | 300   | 225  | 175   | 125    | 90   | 65   | 45 | 35     | 25     |        |
| 2-3/4        | 750  | 550   | 400  | 300   | 200  | 150   | 125    | 85   | 60   | 40 |        |        |        |
| 3            | 750  | 500   | 325  | 275   | 200  | 150   | 100    | 80   | 55   | 40 | 30     | 25     | 15     |
| 3-1/4        | 600  | 450   | 325  | 250   | 175  | 125   | 100    | 75   | 50   | 40 |        |        |        |
| 3-1/2        | 550  | 450   | 300  | 225   | 150  | 125   | 100    | 70   | 50   | 35 | 30     | 20     | 15     |
| 3-3/4        | 500  | 400   | 250  | 225   | 150  | 125   | 100    | 65   | 45   | 35 |        |        |        |
| 4            | 450  | 400   | 250  | 200   | 150  | 100   | 90     | 60   | 45   | 35 | 25     | 20     | 12     |
| 4-1/2        | 450  | 300   | 225  | 175   | 125  | 100   | 80     | 55   | 40   | 30 | 20     | 15     | 12     |
| 5            | 400  | 250   | 225  | 150   | 125  | 100   | 75     | 45   | 35   | 25 | 20     | 15     | 11     |
| 5-1/2        | 400  | 250   | 175  | 150   | 100  | 75    | 70     | 45   | 35   | 25 | 20     | 15     | 10     |
| 6            | 350  | 250   | 175  | 125   | 100  | 75    | 65     | 40   | 30   | 25 | 15     | 15     | 10     |
| 6-1/2        |      |       | 175  |       | 100  |       | 60     | 40   | 30   | 20 | 15     | 14     | 9      |
| 7            |      |       | 150  |       | 90   |       | 55     | 35   | 25   | 20 | 15     | 12     | 9      |
| 7-1/2        |      |       | 150  |       | 90   |       | 55     | 35   | 25   | 20 | 15     | 12     | 8      |
| 3            |      |       | 150  |       | 80   |       | 50     | 35   | 25   | 18 | 15     | 10     | 8      |
| 9            |      |       | 130  | 100   | 75   |       | 45     | 30   | 23   | 15 | 13     | 10     | 7      |
| 10           |      |       | 120  | 90    | 65   |       | 40     | 30   | 20   | 15 | 12     | 10     | 6      |
| 12           |      |       | 100  | 75    | 55   |       | 35     | 25   | 17   | 13 | 10     | 8      | 5      |

## WOOD AND TAPPING SCREWS, FLAT AND ROUND HEAD





|              |      |       |       |      |      | Size  |      |      |       |      |
|--------------|------|-------|-------|------|------|-------|------|------|-------|------|
|              | 4    | 4     | 4     | 5    | 5    | 5     | 6    | 6    | 6     | 7    |
| Length (in.) | Pkg. | Case  | Bulk  | Pkg. | Case | Bulk  | Pkg. | Case | Bulk  | Pkg. |
| 1/4          | 100  | 3000  | 15000 |      |      |       | 100  | 3000 | 15000 |      |
| 3/8          | 100  | 3000  | 15000 | 100  | 3000 | 15000 | 100  | 3000 | 15000 |      |
| 1/2          | 100  | 30000 | 15000 | 100  | 3000 | 15000 | 100  | 3000 | 15000 | 100  |
| 5/8          | 100  | 3000  | 15000 | 100  | 3000 | 15000 | 100  | 3000 | 15000 |      |
| 3/4          | 100  | 3000  | 15000 | 100  | 3000 | 15000 | 100  | 3000 | 15000 | 100  |
| 1            | 100  | 3000  | 15000 | 100  | 3000 | 15000 | 100  | 3000 | 15000 | 100  |
| 1-1/4        |      |       |       |      |      |       | 100  | 1000 | 15000 | 100  |
| 1-1/2        |      |       |       |      |      |       | 100  | 1000 | 15000 | 100  |
| 2            |      |       |       |      |      |       | 100  | 1000 | 15000 |      |

|              |      |      |       |      |      | Size  |      |      |       |      |      |      |
|--------------|------|------|-------|------|------|-------|------|------|-------|------|------|------|
|              | 8    | 8    | 8     | 10   | 10   | 10    | 12   | 12   | 12    | 14   | 14   | 14   |
| Length (in.) | Pkg. | Case | Bulk  | Pkg. | Case | Bulk  | Pkg. | Case | Bulk  | Pkg. | Case | Bulk |
| 3/8          | 100  | 3000 | 15000 | 100  | 3000 | 12000 |      |      |       |      |      |      |
| 1/2          | 100  | 3000 | 15000 | 100  | 3000 | 10000 | 50   | 2000 | 10000 | 50   |      |      |
| 5/8          | 100  | 3000 | 15000 | 100  | 3000 | 10000 | 50   | 2000 | 6000  | 50   |      |      |
| 3/4          | 100  | 3000 | 15000 | 100  | 3000 | 10000 | 50   | 2000 | 6000  | 50   | 500  | 5000 |
| 1            | 100  | 3000 | 10000 | 100  | 3000 | 8000  | 50   | 1000 | 6000  | 50   | 1000 | 4000 |
| 1-1/4        | 100  | 2000 | 7500  | 100  | 2000 | 5000  | 50   | 1000 | 4000  | 50   | 1000 | 3000 |
| 1-1/2        | 100  | 2000 | 5000  | 100  | 2000 | 4000  | 50   | 1000 | 3000  | 50   | 1000 | 2500 |
| 1-3/4        | 100  | 2000 | 4000  | 50   | 1000 | 3000  | 50   | 1000 | 2000  | 50   | 1000 | 2000 |
| 2            | 50   | 1500 | 3500  | 50   | 1000 | 2500  | 50   | 1000 | 2000  | 50   | 1000 | 2000 |
| 2-1/2        | 50   | 1000 | 2500  | 50   | 750  | 2000  | 50   | 500  | 1500  | 50   | 500  | 1500 |
| 3            | 50   | 500  | 2000  | 50   | 500  | 1500  | 25   | 500  | 1000  | 25   | 400  | 1000 |
| 3-1/2        | 25   | 500  | 1000  | 25   | 500  | 1000  | 25   | 500  | 800   | 25   | 400  | 800  |
| 4            | 25   | 500  |       | 25   | 400  | 800   | 25   | 400  | 500   | 25   | 300  | 500  |

|                      | Dimensions        | Dimensions   |           |              |                 |                  |
|----------------------|-------------------|--------------|-----------|--------------|-----------------|------------------|
| Bolt Dia.            | Outside Dia.      | Hole Dia.    | Thickness | Thickness    | *Approx. Number | *Approx. Wt.     |
| in.)                 | (in.)             | (in.)        | Gauge     | Inches       | in 100 Lbs.     | 1000 Pcs. in Lbs |
| PLATE WASHE          |                   |              |           |              |                 |                  |
| /8                   | 7/16              | 3/16         | 18        | 3/64         | 55,400          | 1.8              |
| 3/16                 | 9/16              | 1/4          | 18        | 3/64         | 29,400          | 3.4              |
| /4                   | 3/4               | 5/16         | 16        | 1/16         | 16,200          | 6.2              |
| 5/16                 | 7/8               | 3/8          | 14        | 5/64         | 9,600           | 10.4             |
| 3/8                  | 1                 | 7/16         | 14        | 5/64         | 7,460           | 13.4             |
| /16                  | 1-1/4             | 1/2          | 13        | 3/32         | 3,800           | 26.2             |
| /2                   | 1-3/8             | 9/16         | 12        | 7/64         | 2,740           | 36.6             |
| /16                  | 1-1/2             | 5/8          | 12        | 7/64         | 2,300           | 43.3             |
| 5/8                  | 1-3/4             | 11/16        | 10        | 9/64         | 1,290           | 77.5             |
| 5/8                  | 1-3/4             | 3/4          | 10        | 9/64         | 1,340           | 74.8             |
| 5/4<br>5/4           | 2                 | 13/16<br>7/8 | 10<br>9   | 9/64<br>5/32 | 1,000<br>930    | 100.0<br>107.6   |
| 7/8                  | 2-1/4             | 15/16        | 9         | 5/32         | 720             | 139.2            |
| 7/8                  | 2-1/4             | 15/16        | 9         | 5/32         | 740             | 135.2            |
| (S)                  | 2-1/4             | 1-1/6        | 9         | 5/32         | 580             | 170.4            |
| (S)                  | 2-1/2             | 1-1/8        | 9         | 5/32         | 600             | 165.9            |
| -1/8 (S)             | 2-1/2             | 1-3/16       | 9         | 5/32         | 490             | 204.7            |
| -1/8 (L)             | 2-3/4             | 1-1/4        | 9         | 5/32         | 500             | 199.7            |
| -1/6 (L)<br>-1/4 (S) | 2-3/4             | 1-5/16       | 9         | 5/32         | 520             | 194.3            |
| -1/4 (L)             | 3                 | 1-3/10       | 9         | 5/32         | 420             | 236.6            |
| -3/8                 | 3-1/4             | 1-1/2        | 9         | 5/32         | 360             | 276.6            |
| -1/2 (S)             | 3-1/4             | 1-9/16       | 8         | 11/64        | 340             | 297.2            |
| -1/2 (L)             | 3-1/2             | 1-5/8        | 8         | 11/64        | 280             | 351.6            |
| -5/8                 | 3-3/4             | 1-3/4        | 8         | 11/64        | 250             | 402.5            |
| -3/4 (S)             | 3-3/4             | 1-13/16      | 7         | 3/16         | 230             | 430.1            |
| -3/4 (L)             | 4                 | 1-7/8        |           | 3/16         | 200             | 498.3            |
| 2 (S)                | 4-1/4             | 2-1/16       | 7         | 3/16         | 180             | 551.1            |
| 2 (L)                | 4-1/2             | 2-1/8        |           | 3/16         | 160             | 628.0            |
| S.A.E. WASHER        |                   | 2 1.70       | ·         | 57.5         |                 | 02010            |
| /16                  | 1/2               | 7/32         | 16        | 1/16         | 37,000          | 2.7              |
| /4                   | 5/8               | 9/32         | 16        | 1/16         | 24,400          | 4.1              |
| 5/16                 | 11/16             | 11/32        | 16        | 1/16         | 21,200          | 4.7              |
| 3/8                  | 13/16             | 13/32        | 16        | 1/16         | 15,140          | 6.6              |
| 7/16                 | 59/64             | 15/32        | 16        | 1/16         | 11,360          | 8.8              |
| /2                   | 1-1/16            | 17/32        | 13        | 3/32         | 5,900           | 16.9             |
| /16                  | 1-3/16            | 19/32        | 13        | 3/32         | 4,740           | 21.1             |
| 5/8                  | 1-5/16            | 21/32        | 13        | 3/32         | 3,880           | 25.8             |
| 3/4                  | 1-1/2             | 13/16        | 11        | 1/8          | 2,360           | 42.3             |
| 7/8                  | 1-3/4             | 15/16        | 11        | 1/8          | 1,720           | 58.1             |
|                      | 2P                | 1-1/16       | 11        | 1/8          | 1,310           | 76.4             |
| PLATE WASHE          | RS HOT GALVANIZED |              |           |              |                 |                  |
| /4                   | 3/4               | 5/16         | 16        | 1/16         | 15,700          |                  |
| 5/16                 | 7/8               | 3/8          | 14        | 5/64         | 9,100           |                  |
| 3/8                  | 1                 | 7/16         | 14        | 5/64         | 6,500           |                  |
| 7/16                 | 1-1/4             | 1/2          | 13        | 3/32         | 3,350           |                  |
| /2                   | 1-3/8             | 9/16         | 12        | 7/64         | 2,400           |                  |
| /16                  | 1-1/2             | 5/8          | 12        | 7/64         | 2,100           |                  |
| 5/8                  | 1-3/4             | 11/16        | 10        | 9/64         | 1,200           |                  |
| 3/4                  | 2                 | 13/16        | 10        | 9/64         | 950             |                  |
| 7/8                  | 2-1/4             | 15/16        | 9         | 5/32         | 660             |                  |
| (S)                  | 2-1/2             | 1-1/16       | 9         | 5/32         | 530             |                  |
| -1/8 (L)             | 2-3/4             | 1-1/4        | 9         | 5/32         | 460             |                  |
| -1/4 (S)             | 2-3/4             | 1-5/16       | 9         | 5/32         | 480             |                  |

<sup>&</sup>quot;S" SERIES STOCKED

<sup>\*</sup>Quantity per pound may vary ±15% based on I.F.I. allowable thickness tolerances.



Any man worth his salt will stick up for what he believes right, but it takes a slightly bigger man to acknowledge instantly and without reservation that he is in error.

GENERAL PEYTON C. MARCH