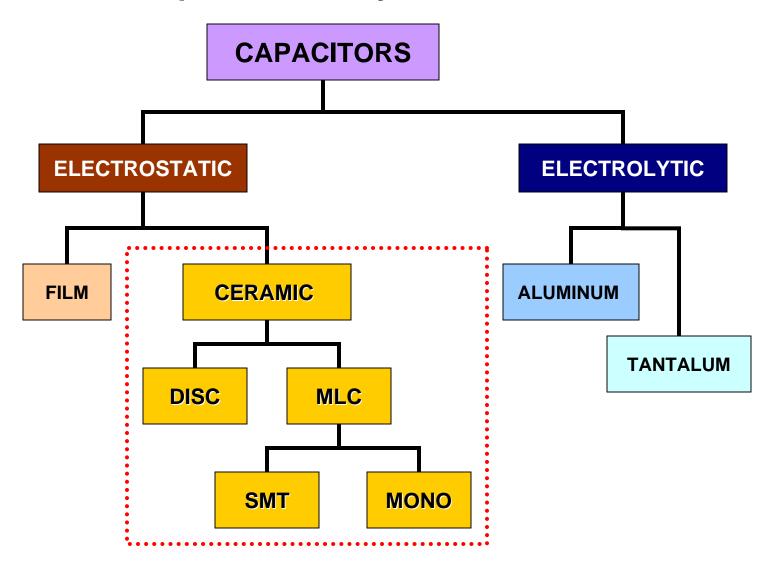
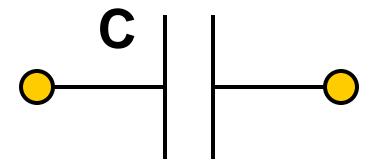
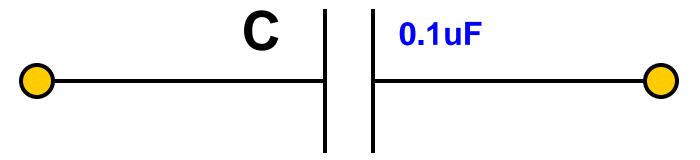

Ceramic Capacitors


NIC PRODUCT TRAINING

Topics: Leaded and Surface Mount (SMT)


- **✓** Characteristics
- ✓ Ceramic Dielectrics
- Substitution Guides
- ✓ Styles Appearance Dimensions
- ✓ NIC Part Numbers
- ✓ Competition Cross Reference
- **✓** Use in Circuit Board Assembly
- ✓ Buzzwords & Technical Info

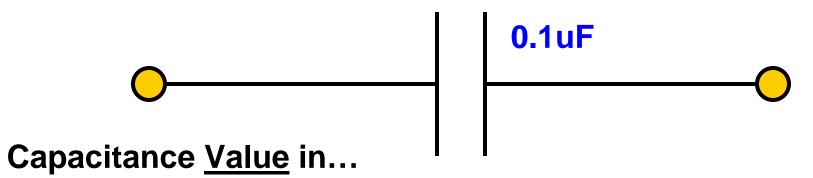
Capacitor Family Tree


Ceramic Characteristics

Ceramic capacitors belong to the family of **ELECTROSTATIC** capacitors. They have the following characteristics:

- They are Non-Polar
- They dominate the **lower range of capacitance values**
- They are the **most widely used style** of capacitor (Largest Volume & Lowest Pricing)
- They are available in both leaded and surface mount styles
- The vast majority are **fixed capacitance value** (their value is not user variable)

Capacitance (Cap) Value Characteristic

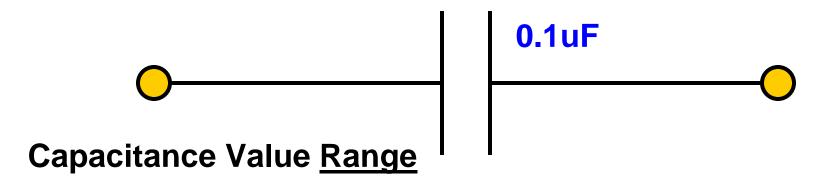

Capacitance Value in...

$$pF = pico-Farad = 1 \times 10^{-12} F = 0.000000000001F$$

NIC offers ceramic capacitors with values ranging from...

$$0.5pF \sim 22,000,000pF (= 22uF)$$

Most call outs are from 10pF ~ 0.1uF


$$pF = pico-Farad = 1 \times 10^{-12} F = 0.000000000001F$$

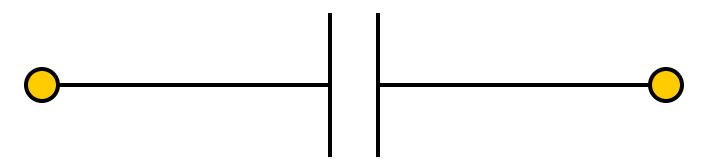
$$nF = nano-Farad = 1 \times 10^{-9} F = 0.000000001F$$

$$uF = micro-Farad = 1 \times 10^{-6} F = 0.000001F$$

$$1000pF = 1nF$$

$$1,000,000$$
pF = 1000 **nF** = 1 **uF**

Low End: pF

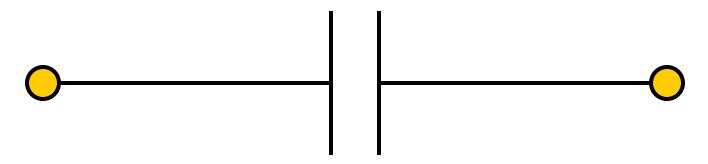

Typical Values: 1pF, 4.7pF, 22pF, 100pF, 330pF, 1000pF, etc.

Medium Range: nF

Typical Values: 1nF, 10nF(0.01uF), 100nF (0.1uF), 220nF (0.22uF), etc.

High End: uF

Typical Values: 1uF, 2.2uF, 10uF and 22uF

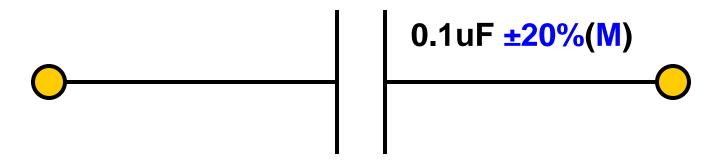

Standard Capacitance Values: (PER EIA-575 & RS 460)

E12

10 12 15 18 22 27 33 39 47 56 68 82

Examples:

1.0, 1.2, 1.5,.... 10, 15, 22,... 100, 180, 270,... 1K, 3.3K, 4.7K,... 10K, 33K, 56K,... 100K, 220K, 680K,... 1uF, 2.2uF, 4.7uF,...



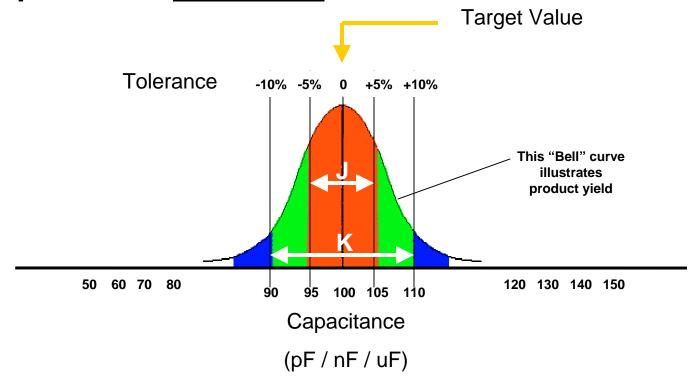
Standard Capacitance Values: (PER EIA-575 & RS 460)

E24
10 11 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91

In-between Values Shown In Red Are Considered "Odd" Non-Preferred Values
And As Such Are Not Stocked
And Should Be Discouraged From Being Selected...

Tolerance Characteristic

Capacitance Tolerance

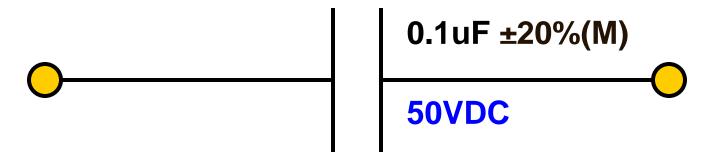

Capacitance value will have tolerance value (+25°C):

```
±1% (F), ±2% (G), ±5% (J), ±10%(K), ±20%(M) and +80%/-20%(Z) ±0.1pF(B), ±0.25pF(C) and ±0.5pF(D)
```

These are the most commonly called out tolerances

Tolerance Characteristic

Capacitance Tolerance



Capacitance Tolerance Substitution

"A component with a tighter (better) tolerance can replace a looser (worst) tolerance component."

i.e... $\pm 1\%$ (F) tolerance part can replace $\pm 2\%$ (G), $\pm 5\%$ (J) or $\pm 10\%$ (K) tolerance part i.e... $\pm 2\%$ (G) tolerance part can replace $\pm 5\%$ (J), $\pm 10\%$ (K) or $\pm 20\%$ (M) tolerance part i.e... $\pm 5\%$ (J) tolerance part can replace $\pm 10\%$ (K) or $\pm 20\%$ (M) tolerance part i.e... $\pm 10\%$ (K) tolerance part can replace $\pm 20\%$ (M) or $\pm 80\%$ -20%(Z) tolerance part i.e... $\pm 20\%$ (M) tolerance part can replace $\pm 80\%$ -20%(Z) tolerance part

Voltage Characteristic

Voltage Rating

NIC offers ceramic capacitors with voltage ratings from...

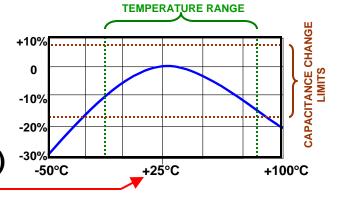
16VDC ~ 15,000VDC

Most call outs are from 25V ~ 100VDC

Voltage Rating Substitution

"A component with a higher voltage rating may be used in place of, or as a substitute for, a lower voltage rated component."

- i.e... 1000V rated part can replace 500V, 250V or 100V rated part.
- i.e... 500V rated part can replace 250V, 100V or 50V rated part.
- i.e... 250V rated part can replace 100V, 50V or 25V rated part.
- i.e... 100V rated part can replace 50V or 25V rated part.
- i.e... 50V rated part can replace 25V or 16V rated part.
- i.e... 25V rated part can replace 16V or 10V rated part.


TC Characteristic

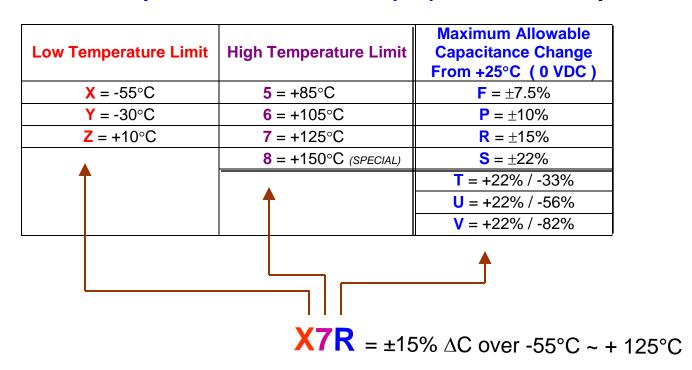
Unfortunately not all capacitance values can be produced from one ceramic dielectric formulation...

A wide range of ceramic dielectrics are needed, and have been developed, to cover a broad range of capacitance values. The EIA (*Electronics Industries Alliance*) established <u>industry classifications</u> for ceramic dielectrics that are agreed to and met by all ceramic capacitor producers.

These ceramic dielectric classifications are identified by their temperature coefficient (TC) code.

TC Characteristic

Room Temperature is +25°C (77°F)


All capacitors are specified (and guaranteed) with regards to their <u>capacitance value and tolerance at +25°C</u>

All capacitors <u>will change in capacitance value</u> if their temperature departs from room temperature (through heating or cooling within an electronic circuit). Blue line shown on above graph illustrates capacitance change over -50°C to +100°C temperature range.

The <u>maximum allowable change in capacitance</u> over a specified <u>operating temperature range</u> is the <u>Temperature Coefficient (TC)</u> of the capacitor.

TC Characteristic

Standard Temperature Coefficients (TC) of ceramic capacitors:

* MLC = Multi-Layer Ceramic

TC Characteristic

Industry standard Temperature Coefficients (TC) of ceramic capacitors:

GENERAL PURPOSE: FAIR PERFORMANCE OVER TEMPERATURE, VOLTAGE, FREQUENCY AND TIME

X5R = ±15% ΔC over -55°C ~ +85°C

X7R = ±15% ΔC over -55°C ~ +125°C standard Tolerance: K = ±10%

Y5F = ±7.5% ΔC over -30°C ~ +85°C

Y5P = ±10% ΔC over -30°C ~ +85°C

Y5R = ±15% ΔC over -30°C ~ +85°C

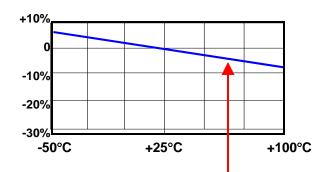
Y5S = ±22% ΔC over -30°C ~ +85°C

Y5U = +22% / -33% ΔC over -30°C ~ +85°C

Y5U = +22% / -56% ΔC over -30°C ~ +85°C

Y5U = +22% / -56% ΔC over -30°C ~ +85°C

X5U = +22% / -82% ΔC over -30°C ~ +85°C standard Tolerance: Z = -20%/+80%


Z5U = +22% / -82% ΔC over -10°C ~ +85°C standard Tolerance: M = ±20%

Z5V = +22% / -82% ΔC over -10°C ~ +85°C

ULTRA -STABLE OVER TEMPERATURE, VOLTAGE, FREQUENCY AND TIME

COG = NPO = 0±30PPM/ °C over -55°C ~ + 125°C standard Tolerance: J = ±5%

TC Characteristics

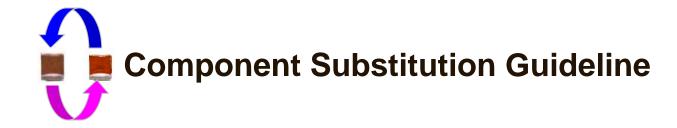
SPECIAL TEMPERATURE COMPENSATING TC'S

(linear capacitance value change over temperature)

 $N150 = -150PPM \pm 60PPM/ °C over -30°C ~ + 85°C$

 $N470 = -470PPM \pm 60PPM/ °C over -30°C ~ + 85°C$

 $N750 = -750PPM \pm 120PPM/ °C over -30°C \sim + 85°C$


 $N1500 = -1500PPM \pm 250PPM/ °C over -30°C ~ + 85°C$

 $N3300 = -3300PPM \pm 500PPM/ °C over -30°C ~ + 85°C$

 $SL = -330PPM \pm 500PPM / °C over -30°C ~ + 85°C$

These temperature compensating TC's are available in CERAMIC DISC CAPACITOR styles...

Temperature Coefficient

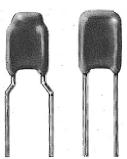
"A component <u>with a more stable (better)</u> temperature characteristic (TC) can replace <u>a less</u> temperature stable (worse) component.

i.e...an X7R ceramic can replace Z5U or Y5V ceramic parts.

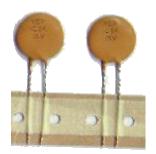
i.e...an NPO ceramic can replace a X7R or Z5U or Y5V ceramic.

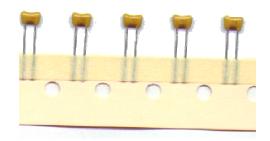
NPO... X7R... X5F... X5P... X5R... XRS... X5T... Y5U... Y5V... Z5U... Z5V...

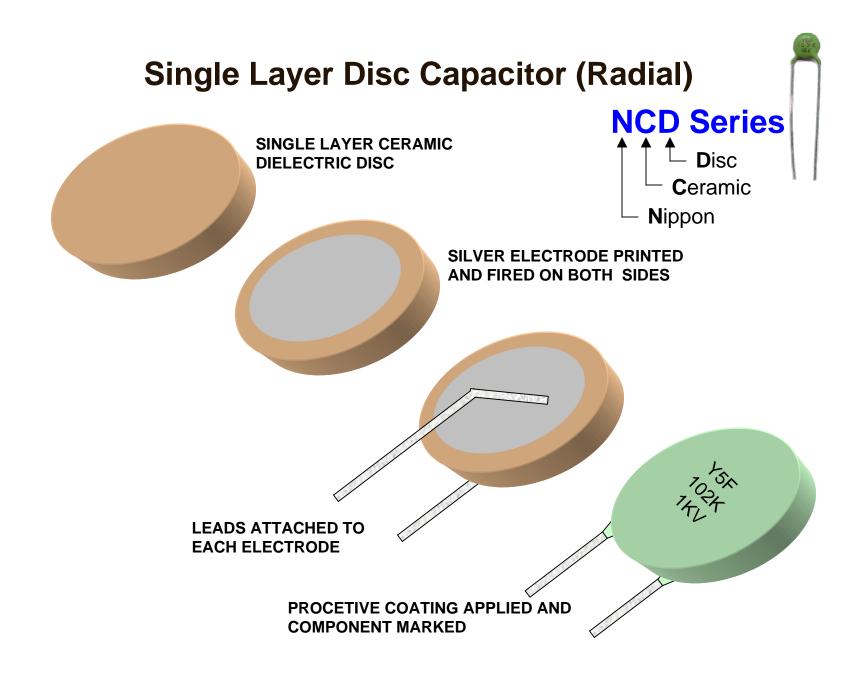
MOST STABLE


LEAST STABLE

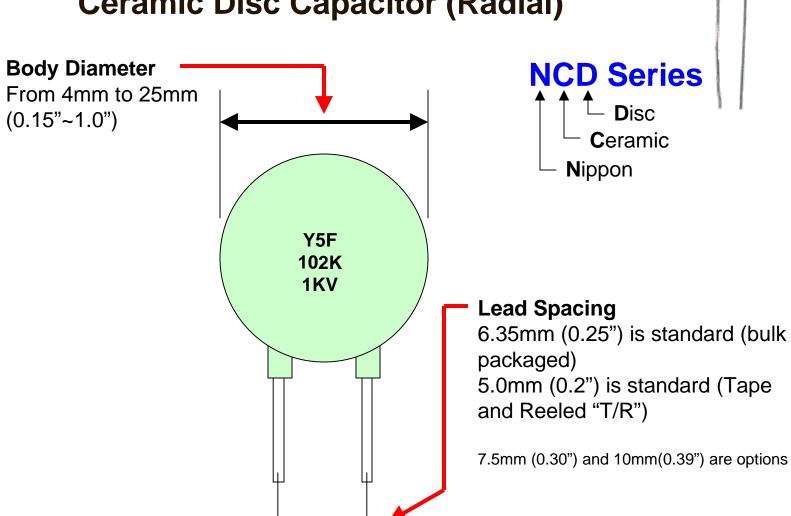
Styles - Appearance (Leaded)

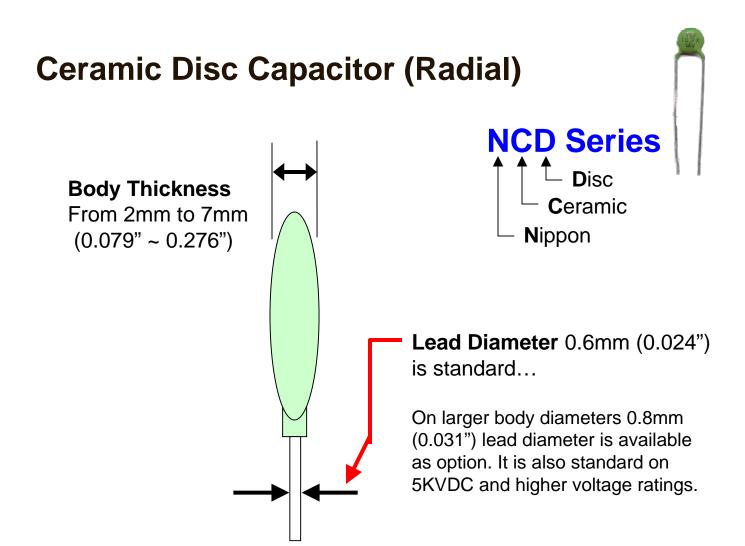



Radial Leaded Ceramic Disc

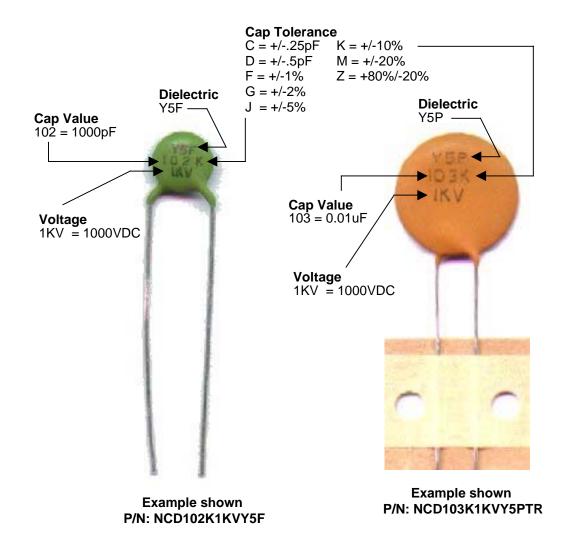

Axial Leaded "Mono"

Monolithic Multi-layer Ceramic (MLC)

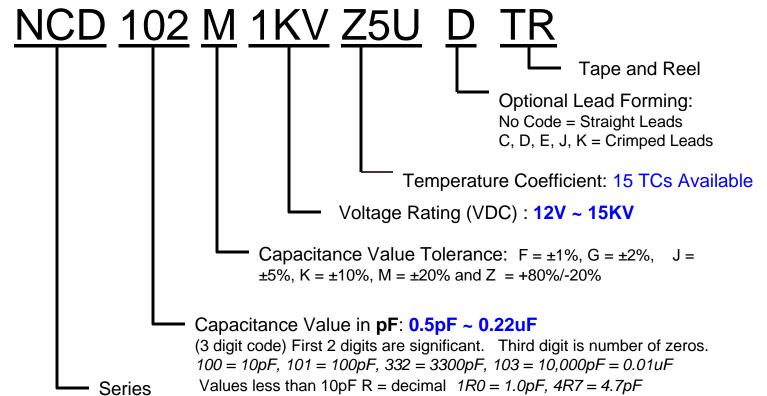




Packaged on tape for auto insertion



Ceramic Disc Capacitor (Radial)


Ceramic Disc Capacitor (Radial)

Part Numbering System

NIC NCD Series - Ceramic Disc Capacitor

Capacitance Range per TC

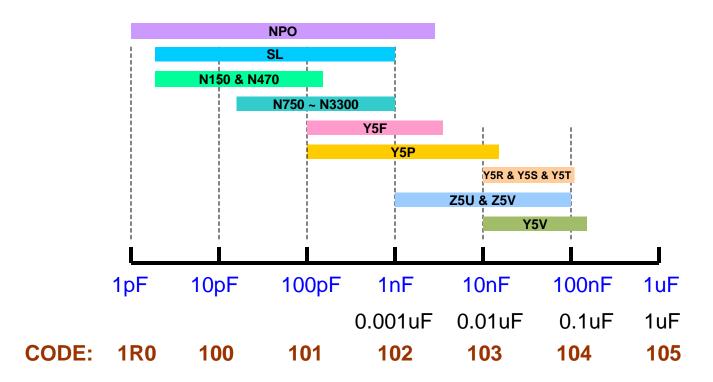
VSP IO3K IKV

NIC NCD Series - Ceramic Disc Capacitor

Temperature Coefficients:

тс	Capacitance Range	Capacitance Value Code	Voltage Range
NPO	0.5pF ~ 470pF	0R5 ~ 471	50VDC ~ 15KVDC
SL	3pF ~ 1000pF	3R0 ~ 102	50VDC ~ 15KVDC
N150 & N470	3pF ~ 150pF	3R0 ~ 151	
N750	22pF ~ 470pF	220 ~ 471	50VDC ~
N1500	22pF ~ 1000pF	220 ~ 102	1KVDC
N3300	47pF ~ 1000pF	470 ~ 102	
Y5F	100pF ~ 4700pF	101 ~ 472	
Y5P	100pF ~ 0.015uF	101 ~ 153	50VDC ~ 15KVDC

Capacitance Range per TC

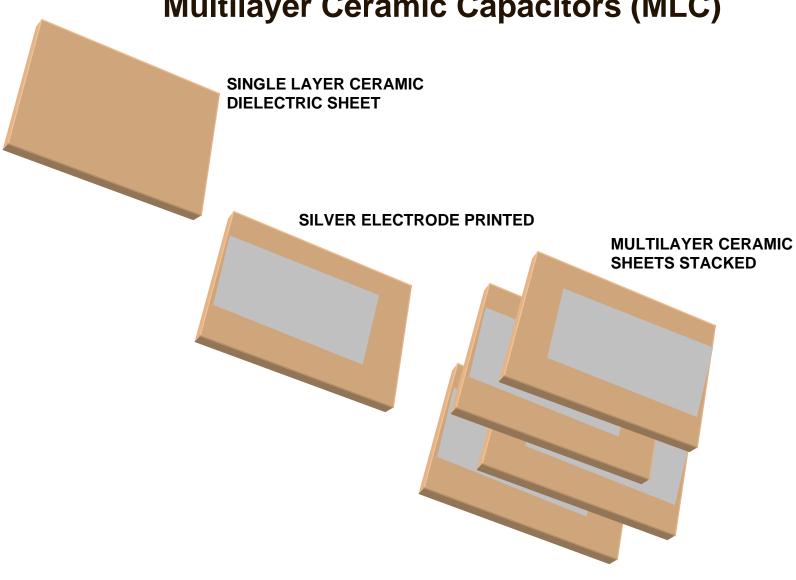

NIC NCD Series - Ceramic Disc Capacitor

Temperature Coefficients:

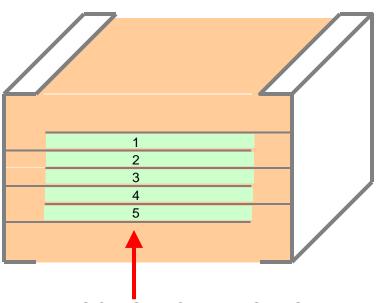
TC	Capacitance Range	Capacitance Value Code	Voltage Range
Y5R / Y5S / Y5T	0.01uF ~ 0.1uF	103 ~ 104	12VDC ~ 50VDC
Y5V	0.01uF ~ 0.22uF	103 ~ 224	12VDC ~ 50VDC
Z5U	1000pF ~ 0.1uF	102 ~ 104	50VDC ~ 15KVDC
Z5V	1000pF ~ 0.1uF	102 ~ 104	50VDC ~ 5KVDC

Capacitance Range per TC

NIC NCD Series - Ceramic Disc Capacitor

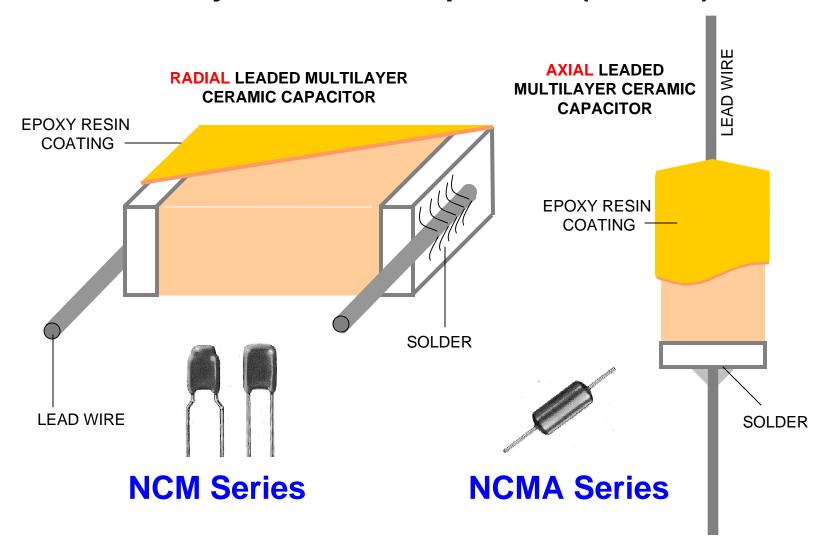

Cross Reference

Ceramic Disc Capacitor Cross Reference -


Πc	ILLINOIS CAPACITOR, INC.	MALLORY	muRata	Panasonic [®]	PHILIPS	TECATE	XICON"
NIC	Illinois Capacitor	Mallory	Murata	Panasonic	Phillips	Tecate	Xicon
NCD Series	BCR GCR GHR GMR GQR	CEC CMC CPC GE GH GM GP GS LC LE	DD (OBSOLETE) DE DHR	ECC ECK ECF ECU-S	D DTZ DD	CD	CD CDR

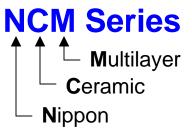
Multilayer Ceramic Capacitors (MLC)

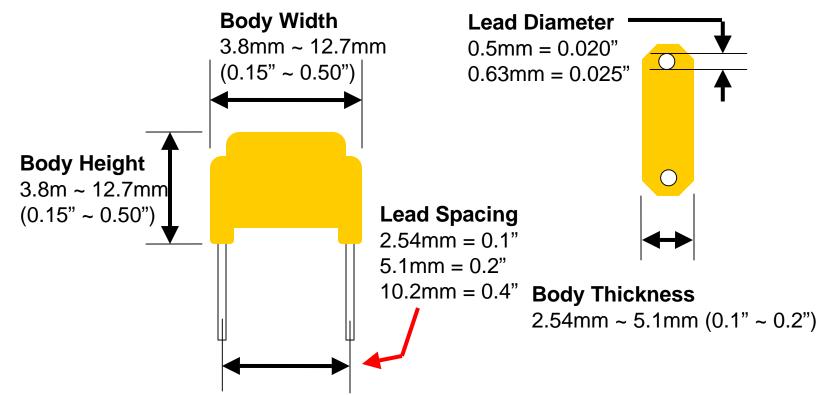
Multilayer Ceramic Capacitors (MLC)


MULTILAYER CERAMIC SHEETS PRESSED, FIRED AND CHIP ELEMENT TERMINATED

MULTIPLE LAYERS CONSTRUCTION RESULTS IN MULTIPLE INCREASE IN CAPACITANCE SURFACE AREA = INCREASED CAPACTANCE VALUE

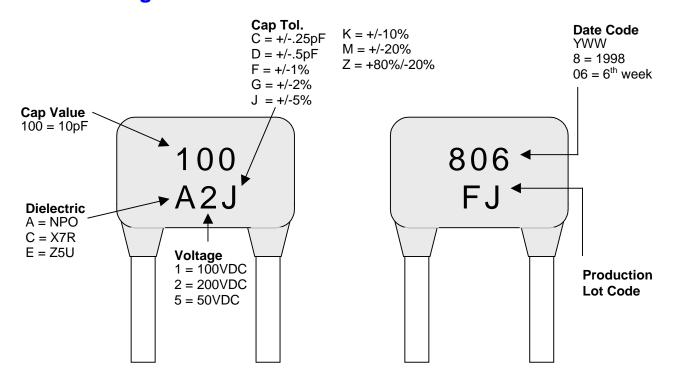
Example above shows <u>five times</u> increase in capacitance as compared to <u>single layer</u>


Multilayer Ceramic Capacitors (Leaded)

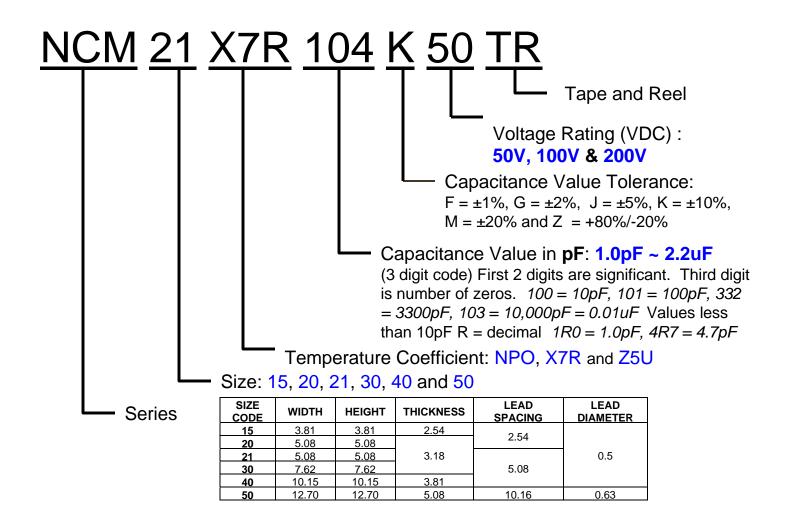


MLC Ceramic Capacitor (Radial)

SIZE CODE	WIDTH	HEIGHT	THICKNESS	LEAD SPACING	LEAD DIAMETER	
15	3.81	3.81	2.54	2.54		
20	5.08	5.08		2.54		
21	5.08	5.08	3.18		0.5	
30	7.62	7.62		5.08		
40	10.15	10.15	3.81			
50	12.70	12.70	5.08	10.16	0.63	



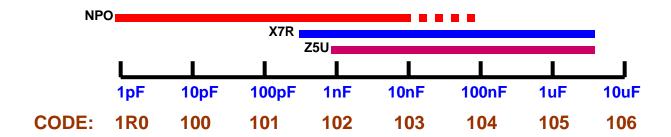
NIC NCM Series - Radial Leaded Multilayer Ceramic Capacitor Part Marking



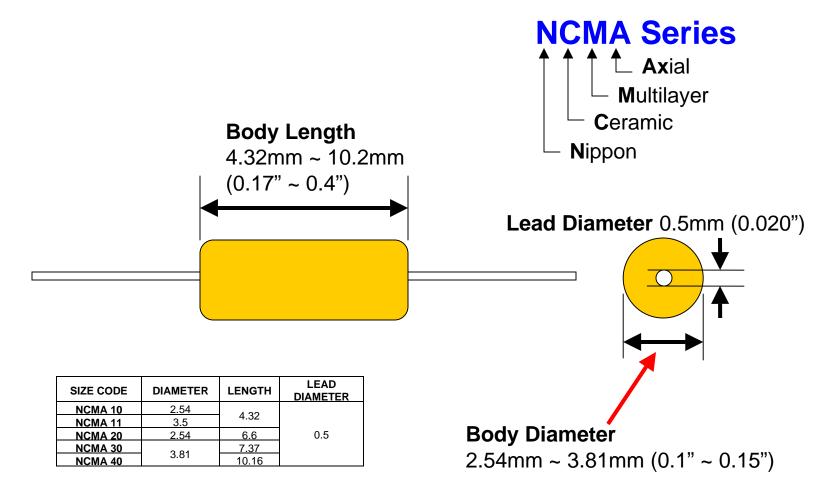
Example shown P/N: NCM15NPO100J200

Part Numbering System

NIC NCM Series - Radial Leaded Multilayer Ceramic Capacitor

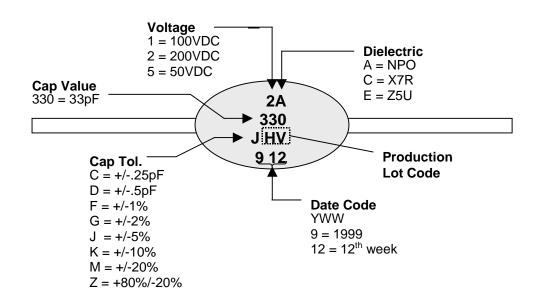


Capacitance Range per TC

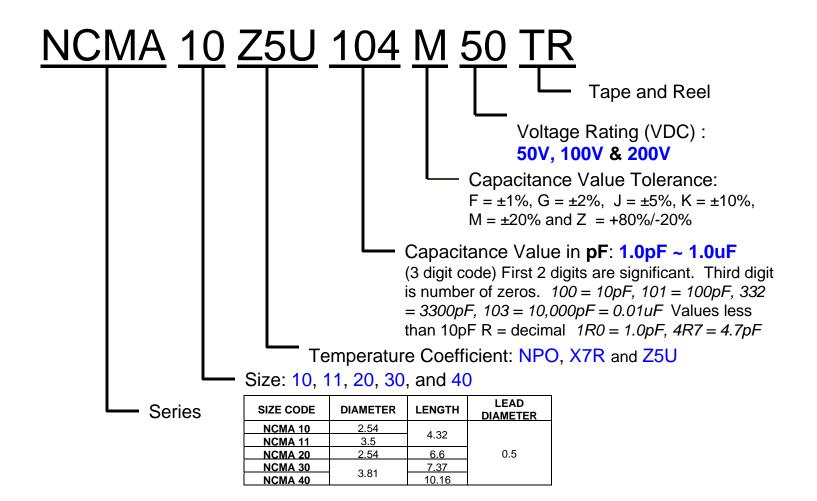

NIC NCM Series - Radial Leaded Multilayer Ceramic Capacitor <u>Temperature Coefficients:</u>

тс	Capacitance Range	Capacitance Value Code	Voltage Range	Standard Tolerance
NPO	1.0pF ~ 0.1uF	1R0 ~ 104	50VDC ~ 200VDC	(J) +/-5%
X7R	470pF ~ 4.7uF	470 ~ 475	50VDC ~ 200VDC	(K) +/-10%
Z5U	1000pF ~ 4.7uF	102 ~ 475	50VDC ~ 200VDC	(M) +/-20%

MLC Ceramic Capacitor (Axial)



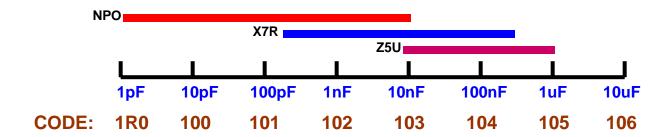
MLC Ceramic Capacitor (Axial)



NIC NCMA Series - Axial Leaded Multilayer Ceramic Capacitor Part Marking

Part Numbering System

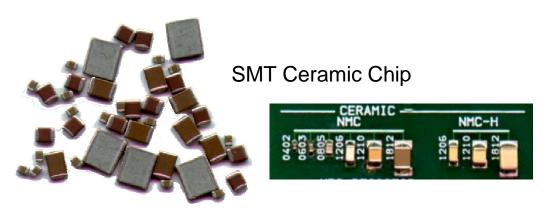
NIC NCMA Series - Axial Leaded Multilayer Ceramic Capacitor



Capacitance Range per TC

NIC NCMA Series - Axial Leaded Multilayer Ceramic Capacitor <u>Temperature Coefficients:</u>

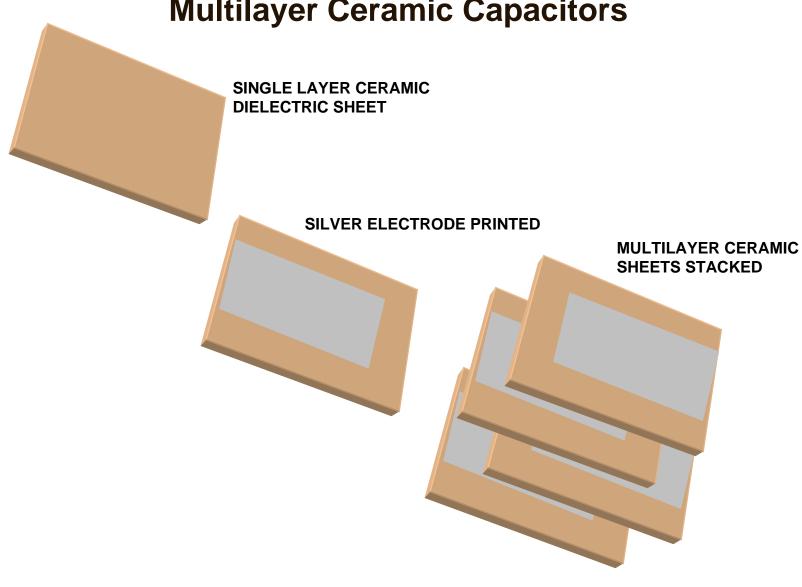
тс	Capacitance Range	Capacitance Value Code	Voltage Range	Standard Tolerance
NPO	1.0pF ~ 0.01uF	1R0 ~ 103	50VDC ~ 200VDC	(J) +/-5%
X7R	220pF ~ 0.47uF	221~ 474	50VDC ~ 200VDC	(K) +/-10%
Z5U	0.01uF ~ 1.0uF	103 ~ 105	50VDC ~ 200VDC	(M) +/-20%


Cross Reference

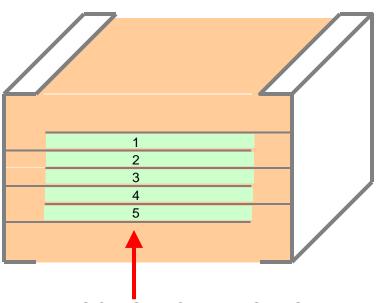
Leaded Multilayer Ceramic Capacitor Cross Reference:

Пс	/ <u>\\\\</u>	KEMET	MALLORY	Panasonic [®]	PHILIPS	XICON"
NIC	AVX	KEMET	Mallory	Panasonic	Phillips	XICON
NCM Series	SR	C315 ~ C350	M	ECU-S	K CN CW CZ	EDM
NCMA Series	SA	C410 ~ C440	Р	n/a	A A40 A41 A43	CA

Styles - Appearance (Surface Mount)



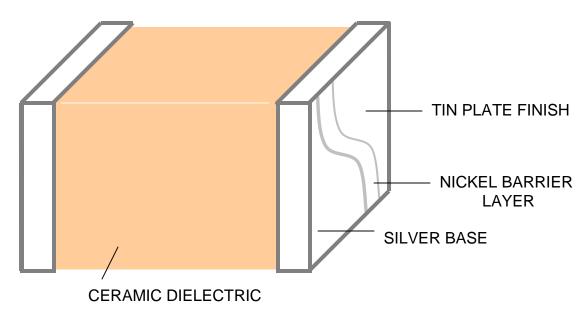
Monolithic Multi-layer Ceramic Chip (MLC)


Packaged on tape for auto insertion

Multilayer Ceramic Capacitors

Multilayer Ceramic Capacitors (MLC)

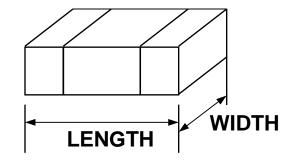
MULTILAYER CERAMIC SHEETS PRESSED, FIRED AND CHIP ELEMENT TERMINATED



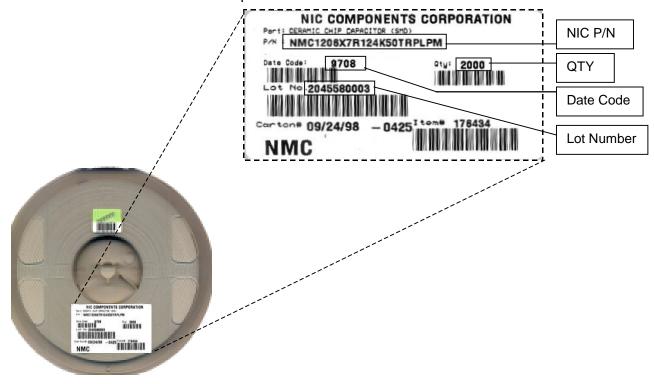
MULTIPLE LAYERS CONSTRUCTION RESULTS IN MULTIPLE INCREASE IN CAPACITANCE SURFACE AREA = INCREASED CAPACTANCE VALUE

Example above shows <u>five times</u> increase in capacitance as compared to <u>single layer</u>

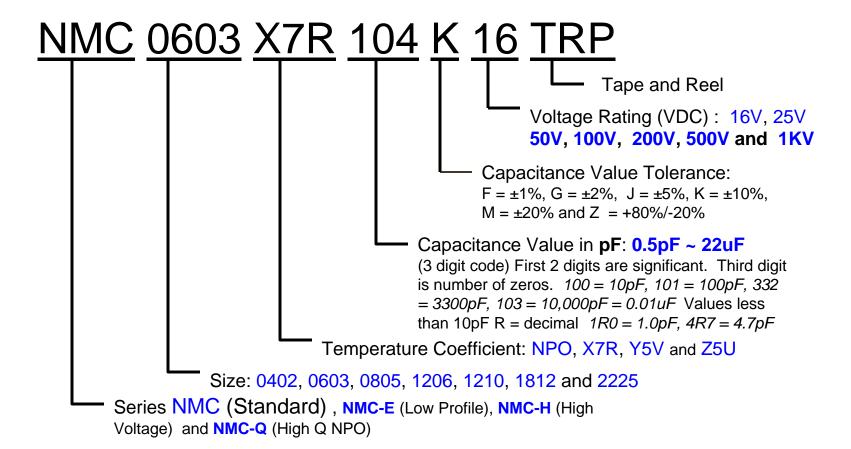
Multilayer Ceramic Capacitors



Dimensions (Surface Mount)

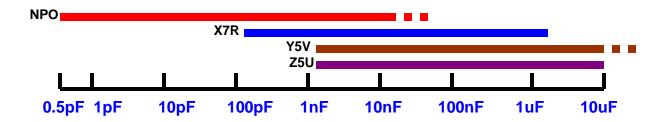

	English	Metric	Length	Width
0402	0402	1005	1.0mm (0.04")	0.5mm (0.02")
0603	0603	1608	1.6mm (0.06")	0.8mm (0.03")
0805	0805	2012	2.0mm (0.08")	1.2mm (0.05")
	1206	3216	3.2mm (0.12")	1.6mm (0.06")
121	1210	3225	3.2mm (0.12")	2.5mm (0.10")
1812	1812	4532	4.5mm (0.18")	3.2mm (0.12")
	2225	5764	5.7mm (0.22")	6.4mm (0.25")

Reel Labeling System


The NIC part number, lot number, date code, reel quantity, customer part number, purchase order number, etc. is printed (and bar coded if requested) on the reel label(s) for each reel of product.

Part Numbering System

NIC NMC Series - Multilayer Ceramic Chip Capacitor


Capacitance Range per TC

NIC NMC Series - Multilayer Ceramic Chip Capacitor

Temperature Coefficients:

тс	Capacitance Range	Capacitance Value Code	Voltage Range	Standard Tolerance
NPO	0.5pF ~ 0.056uF	0R5 ~ 563	25VDC ~ 1KVDC	(J) +/-5%
X7R	100pF ~ 2.2uF	101~ 225	16VDC ~ 1000VDC	(K) +/-10%
Y5V	1000pF ~ 10uF	102 ~ 106	16VDC ~ 50VDC	(Z) -20%/+80%
Z5U	1000pF ~ 10uF	102 ~ 106	16VDC ~ 50VDC	(M) +/-20%

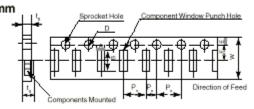
Cross Reference

Multilayer Ceramic Chip Capacitor Cross Reference:

NIC NIC	/AVX	KEMET KEMET	JOHANSON DIELECTRICS JDI	muRata Murata	Panasonic° Panasonic
NMC 0402	0402	C0402	R07	GRM36	ECU(Q)
NMC 0603	0603	C0603	R11	GRM39	ECU(V)
NMC 0805	0805	C0805	R15	GRM40	ECV(N)
NMC1206	1206	C1206	R18	GRM42-6	ECU(M)
NMC1210	1210	C1210	S41	GRM42-2	ECU(P)
	PHILIPS	⊗TDK .	Vituaman		
NIC	Phillips	TDK	Vıtramon		
NMC 0402	Cxxxx0402	CC0402	VJ0402		
NMC 0603	Cxxxx0603	CC0603	VJ0603		
NMC 0805	Cxxxx0805	CC0805	VJ0805		
NMC1206	Cxxxx1206	CC1206	VJ1206		
NMC1210	Cxxxx1210	CC1210	VJ1210		

Multilayer Ceramic Capacitors

Packaged on tape for auto insertion

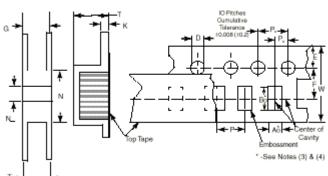

TR

TRPL

PAPER TAPE

. ,

DEGARDBOARD CARRIER TAPE DIMENSIONS IN


7 INCH REEL QUANTITIES*

Size	0402	0603	0805	1206
Tape Size	8 mm	8 mm	8 mm	8 mm
Min Qty Per Reel	10,000	4000	4000	4000
Max Qty Per Reel	10,000	4000	5000	5000

^{*}Ony Dependent on Chip Thickness

PLASTIC TAPE

EMBOSSED PLASTIC CARRIER TAPE

7 INCH REEL QUANTITIES*

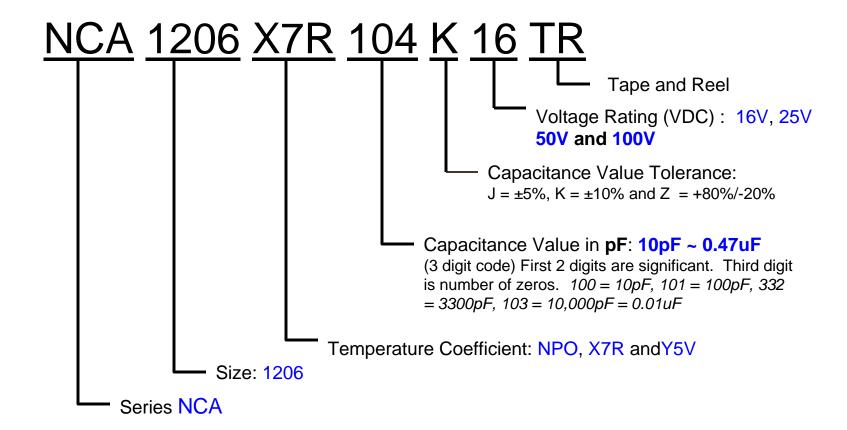
Size	0805	1206	1210	1812	2225
Tape Size	8 mm	8 mm	8 mm	12 mm	12 mm
Min Oty Per Reel	2000	2000	2000	1000	1000
Max Qty	5000	5000	5000	2000	1000
Per Reel	5000	5000	5000	2000	1000

[&]quot;Qty Dependent on Chip Thickness

Dimensions (Surface Mount)

NIC NCA Series - Multilayer Ceramic Chip Capacitor Array

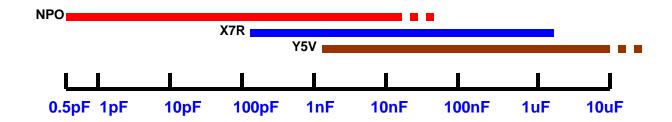
English	Metric	Length	Width
1206	3216	3.2mm (0.12")	1.6mm (0.06")
	PART DIME	ENSIONS (mm)	


- -	el le sal
	I H
d .	28 20

L	W	Н	р	S	1
3.2 +/-0.2	1.6 +/-0.2	1.0 +/-0.3	0.3 +/-0.2	0.8 +/-0.2	0.4 +/-0.1

Part Numbering System

NIC NCA Series - Multilayer Ceramic Chip Capacitor Array



Capacitance Range per TC

NIC NCA Series - Multilayer Ceramic Chip Capacitor Array

Temperature Coefficients:

тс	Capacitance Range	Capacitance Value Code	Voltage Range	Standard Tolerance
NPO	10pF ~ 1000pF	100 ~ 102	16VDC ~ 100VDC	(J) +/-5%
X7R	470pF ~ 0.15uF	471~ 154	16VDC ~ 100VDC	(K) +/-10%
Y5V	0.01uF ~ 0.47uF	103 ~ 474	16VDC ~ 50VDC	(Z) -20%/+80%/-

Cross Reference

Multilayer Ceramic Chip Capacitor Array Cross Reference:

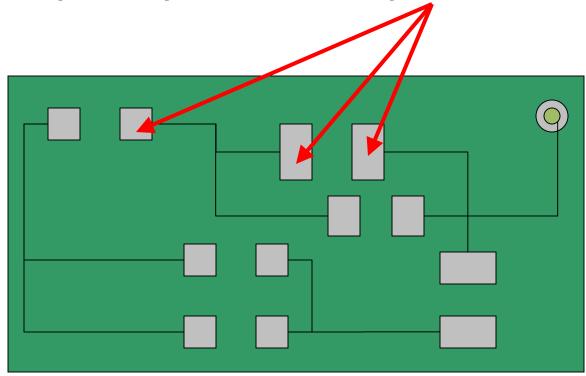
NIC NCA1206

KEMET KEMET

muRata

PHILIPS

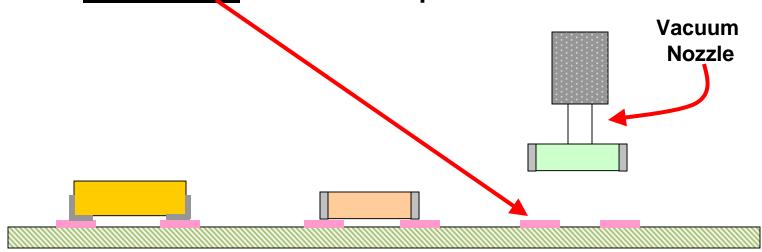
AVX W3A4

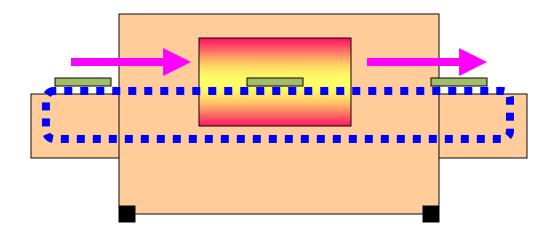

C1632

Murata GNM30-401 Phillips 0612

0612

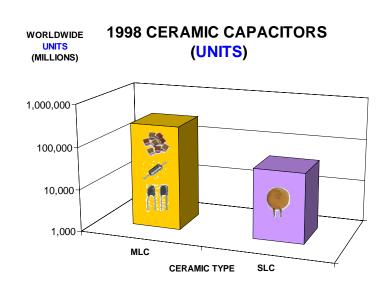
Assembly (Surface Mount)

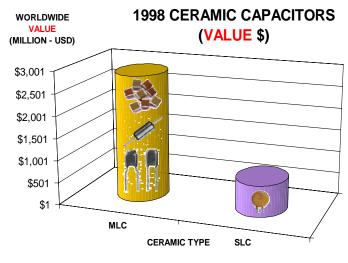

1. Solder paste is printed onto land patterns.


Assembly (Surface Mount)

2. SMT parts are placed (by automatic pick and place equipment) onto solder paste covered land patterns.

Assembly (Surface Mount)


3. Circuit board is run through a reflow soldering oven. Where the solder paste liquefies, and electrically connects the SMT component terminations to the circuit board land patterns. As the circuit board moves out of heating zone the liquid solder solidifies mechanically fixing the SMT components to the circuit board.



Ceramic Capacitor Market 1998

Source: Paumanok PublicationsInc.presented @ CARTS 1999

Туре	Units (MILLIONS)	Value (USD)	ASP (USD)	Percent Units : Value
MLC	284,000	\$2,855,000,000	\$0.010	86%:80%
SLC	44.000	\$702,000,000	\$0.016	14% : 20%

- "MLC" = Multi-Layer Ceramic (NMC / NCM / NCMA Series are MLC) "MLCC" = Multi-layer Ceramic Chip = NMC Series
- "Mono" = "Monolithic": mono-lith-ic
 Formed from a single structure < relating to a monolithic multi-layer ceramic capacitor > (NMC / NCM / NCMA Series are Monolthic Type)
- "SLC" = Single Layer Ceramic (NCD Series Ceramic Disc Capacitor is radial leaded SLC)
- > "SMT" = Surface Mount referring to NMC Series MLCC
- "TC" (Temperature Coefficient): refers to the capacitor's change in capacitance value over it's operating temperature range. EIA TC codes (NPO... X7R... Z5U... etc...)

- "PPM"(Parts Per Million): when relating to TC (temperature coefficient) the amount of capacitance change in parts per million.
 30PPM = 0.003% change in capacitance per degree Celsius.
 (At +125°C capacitance change will be +/-0.3% of +25 °C value)
- "NPO" (also called COG): very stable, high Q, EIA class I ceramic dielectric. TC = 0 +/- 30PPM (-55C to +125C).
- **"X7R":** Good performance, **semi-stable**, EIA class II ceramic dielectric. Capacitance change from +/-15% max. (-55C to +125C).
- "Z5U": Fair performance, EIA class III ceramic dielectric. Capacitance change from +22% to -56% max. (+10C to +85C).
- "Y5V": Fair performance, EIA class III ceramic dielectric.
 Capacitance changes from +22% to -82% max. (-30C to +85C).

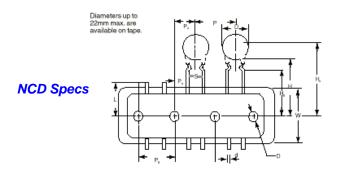
- "DF": (Dissipation Factor) also referred to as "Loss Tangent" and "Power Factor", the ratio of the ESR to the reactance (Xc) of the capacitor. Expressed in %. The lower the DF the better the part...
- "ESR": (Equivalent Series Resistance) in ohms, all internal resistance of a capacitor. The lower the ESR the better the part...
- "Q" (Quality Factor): figure of merit relating to material losses within the capacitor. (Q = Xc/ESR). The higher the Q the better the part...
- > "IR" (Insulation Resistance): the insulating property of the dielectric material. Also called the standoff resistance. The higher the IR the better the part...

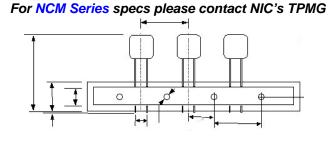
Technical Info

Customers may inquiry into the following:

SMT Component Taping Specifications:

- ➤ All <u>surface mount ceramic chip capacitors</u> are supplied on tape and reel packaging
- ➤ Taping is in accordance with EIA-481-1-A guidelines
- ➤ Tape will be punched paper tape ("TR" part number suffix) or embossed plastic tape ("TRPLP" part number suffix). Industry trend is to move to paper tape.
- ➤ You can find the NMC series taping specifications at the end of the NMC series data sheets in our catalog or at web site page: http://www.niccomp.com/catalog/taping5.pdf

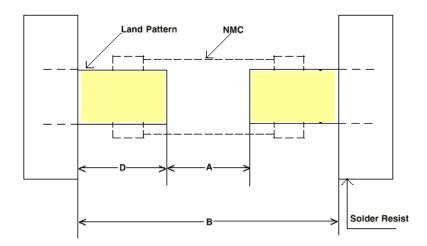

Technical Info


Customers may inquiry into the following:

<u>Leaded Component Taping Specifications</u>:

Leaded components are supplied either bulk (bags) or tape and reel/tape and box (ammo pack).

- ➤ Taping is in accordance with EIA-468-B (Radial) or EIA-296-E (Axial) guidelines.
- You can find the NCD and NCMA series taping specifications in our catalog or at web site page: http://www.niccomp.com/catalog/taping3.pdf and http://www.niccomp.com/catalog/ncma.pdf


Technical Info

Customers may inquiry into the following:

Soldering Land Patterns or Pads (SMT styles, NMC series):

If the customer is looking for these, they are seeking the recommended land pattern dimensions.

These can be found on the application note section in the rear of our catalog or from web site location: http://www.niccomp.com/pi/nmclnd.pdf

