The AT-PS/2 Keyboard Interface
This articleis Copyright 2001, Adam Chapweske

I ntroduction:

This article triesto cover every aspect of the AT and PS/2 keyboards. It includes information on the
low-level signals and protocol, scan codes, the command set, initialization, compatibility issues, and
other miscellaneous information. Sinceit's closely related, I've also included information on interfacing
your PC's keyboard controller. Asof right now, all code samplesinvolving the keyboard interface are
written in assembly for Microchip's PIC microcontrollers. All code samples for interfacing the PC's
keyboard controller are written in x86 assembly.

| should mention that all of the information in this article comes from my own experiences and from
other sources that may or may not be accurate. | did not consult any official documentation of "AT" or
"PS/2" keyboard standards since none has been availableto me. Therefore, | provide the following
disclaimer:

ALL INFORMATION WITHIN THISARTICLE ISPROVIDED "ASIS' AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. | DO
NOT GUARANTEE ANY INFORMATION IN THISARTICLE ISACCURATE, AND IT SHOULD
BE USED FOR ABSTRACT EDUCATIONAL PURPOSES ONLY .

Y ou may click here to goto my main page. There, you will find other articles, code, projects, and links
related to the computer keyboard. | am also available for private contracting--click here for more
information about me, including my resume. If you find any errorsin this article or have any questions,
feel free to send me an email. | don't have time to respond to them all, but | will read them all and keep
your questions/comments in mind when updating this page.

A History L esson:
The most popular keyboards in use today include:

e USB keyboard - Latest keyboard supported by all new computers (Macintosh and
IBM/compatible). These arerelatively complicated to interface and are not covered in this
article.

e |BM/compatible keyboards - Also known as"AT keyboards' or "PS/2 keyboards', all modern
PCs support this device. They're the easiest to interface, and are the subject of this article.

e ADB keyboards - Connect to the Apple Desktop Bus of older Macintosh systems. These are not
covered in thisarticle

IBM introduced a new keyboard with each of its major desktop computer models. The original IBM
PC, and later the IBM XT, used what we call the "XT keyboard." These are obsolete and differ
significantly from modern keyboards; the XT keyboard is not covered in this article. Next came the
IBM AT system and later the IBM PS/2. They introduced the keyboards we use today, and are the topic
of thisarticle. AT keyboards and PS/2 keyboards were very similar devices, but the PS/2 device used a
smaller connector and supported a few additional features. Nonetheless, it remained backward

compatible with AT systems and few of the additional features ever caught on (since software also
wanted to remain backward compatible.) Below isasummary of IBM's three major keyboards.

IBM PC/XT Keyboard (1981):

83 keys

5-pin DIN connector

Simple uni-directional serial protocol

Uses what we now refer to as scan code set 1
No host-to-keyboard commands

IBM AT Keyboard (1984) - NOT backward compatible with XT systems.

84 -101 keys

5-pin DIN connector

Bi-directional serial protocol

Uses what we now refer to as scan code set 2
Eight host-to-keyboard commands

IBM PS/2 Keyboard (1987) - Backward compatible with AT systems;, NOT compatible with XT
systems.

e 84-101keys

6-pin mini-DIN connector
Bi-direction serial protocol
Offers optional scan code set 3
17 host-to-keyboard commands

The PS/2 keyboard was originally an extension of the AT device. It supported afew additional
host-to-keyboard commands and featured a smaller connector. These were the only differences
between the two devices. However, computer hardware has never been about standards so much as
compatibility. For thisreason, any keyboard you buy today will be compatible with PS/2 and AT
systems, but it may not fully support all the features of the original devices.

Today, "AT keyboard" and "PS/2 keyboard" refers only to their connector size. Which
settings/’commands any given keyboard does or does not support is anyone's guess. For example, the
keyboard I'm using right now has a PS/2-style connector but only fully supports seven commands,
partially supports two, and merely "acknowledges' therest. In contrast, my "Test" keyboard has an
AT-style connector but supports every feature/command of the original PS/2 device (plus afew extra.)
It's important you treat modern keyboards as compatible, not standard. If your project relies on
non-general features, it may work on some systems, but not on others...

Modern AT-PS/2 compatible keyboards

Any number of keys (usually 101 or 104)

5-pin or 6-pin connector; adaptor usually included
Bi-directional seria protocol

Only scan code set 2 guarenteed.

Acknowledges all commands; may not act on all of them.

Footnote 1) XT keyboards use a completely different protocol than that used by AT and PS2 systens,
making it incompatible with the newer PCs. However, there was a transition period where some
keyboard controllers supported both XT and AT-PS'2 keyboards (through a switch, jumper, or
auto-sense.) Also, some keyboards were made to work on both types of systems (again, through the use
of a switch or auto-sensing.) |If you've owned such a PC or keyboard, don't let it fool you--XT
keyboards are NOT compatible with modern computers.

General Description:

Keyboards consist of alarge matrix of keys, all of which are monitored by an on-board processor
(called the "keyboard encoder”.) The specific processor varies from keyboard-to-keyboard but they
all basically do the same thing: Monitor which key(s) are being pressed/released and send the
appropriate datato the host. This processor takes care of all the debouncing and buffers any datain its
16-byte buffer, if needed. Y our motherboard contains a "keyboard controller" that isin charge of
decoding all of the data received from the keyboard and informing your software of what's going on.
All communication between the host and the keyboard uses an IBM protocol.

Footnote 1) Originally, IBM used the Intel 8048 microcontroller asits keyboard encoder. The
following is a short list of modern keyboard encoders:

Holtek: HT82K28A, HT82K628A, HT82K68A, HT82K68E
EMC: EM83050, EM83050H, EM83052H, EM83053H,
Intel : 8048, 8049

Motorola : 6868, 6BHC11, 6805

e Zilog: Z8602, Z8614, 28615, Z86C15, Z86E23

Footnote 2) Originally, IBM used the Intel 8042 microcontroller asits keyboard controller. This has
since been replaces with compatible devices integrated in motherboards' chipsets. The keyboard
controller is covered later in thisarticle.

Electrical Interface/ Protocol:

The AT and PS/2 keyboards use the same protocol as the PS/2 mouse.

Scan Codes:

Y our keyboard's processor spends most of itstime "scanning"”, or monitoring, the matrix of keys. If it
finds that any key is being pressed, released, or held down, the keyboard will send a packet of
information known as a "scan code" to your computer. There are two different types of scan codes:
"make codes' and "break codes'. A make codeis sent when akey is pressed or held down. A break
codeis sent when akey isreleased. Every key is assigned its own unique make code and break code so
the host can determine exactly what happened to which key by looking at a single scan code. The set of
make and break codes for every key comprises a"scan code set”. There are three standard scan code
sets, named one, two, and three. All modern keyboards default to set two.

So how do you figure out what the scan codes are for each key? Unfortunately, there's no simple
formulafor calculating this. If you want to know what the make code or break code is for a specific
key, you'll haveto look it upin atable. I've composed tables for all make codes and break codesin all

three scan code sets:

e Scan Code Set 1 - Original XT scan code set; supported by some modern keyboards
e Scan Code Set 2 - Default scan code set for all modern keyboards
® Scan Code Set 3 - Optional PS/2 scan code set--rarely used

Footnote 1) Originally, the AT keyboard only supported set two, and the PS'2 keyboard would default
to set two but supported all three. Most modern keyboards behave like the PS/2 device, but | have
come across a few that didn't support set one, set three, or both. Also, if you've ever done any low-level
PC programming, you've probably notice the keyboard controller supplies set ONE scan codes by
default. Thisis because the keyboard controller converts all incomming scan codes to set one (this
stems from retaining compatibility with software written for XT systems.) However, it's still set two
scan codes being sent down the keyboard's serial line.

Make Codes, Break Codes, and Typematic Repeat:

Whenever akey is pressed, that key's make code is sent to the computer. Keep in mind that a make
code only represents a key on a keyboard--it does not represent the character printed on that key. This
means that there is no defined relationship between a make code and an ASCI| code. It's up to the host
to translate scan codes to characters or commands.

Although most set two make codes are only one-byte wide, there are a handfull of "extended keys'
whose make codes are two or four byteswide. These make codes can be identified by the fact that their
first byte is EOh.

Just as a make code is sent to the computer whenever akey is pressed, a break code is sent whenever a
key isreleased. In addition to every key having its own unigue make code, they all have their own
unique break code. Fortunately, however, you won't always have to use lookup tables to figure out
akey's break code--certain relationships do exist between make codes and break codes. Most set two
break codes are two bytes long where the first byte is FOh and the second byte is the make code for that
key. Break codes for extended keys are usually three bytes long where the first two bytes are EOh, FOh,
and the last byte is the last byte of that key's make code. Asan example, | have listed below athe set
two make codes and break codes for afew keys:

‘ Key ‘ (Set 2) (Set 2)
Make Code | Break Code

| "ar | 1C | FoAC

G | 2E | FO2E

. "F10" | 09 | FO,09

| Right Arrow | EO,74 | EO,FO,74

| Right"Ctrl* | EO,14 | EO,FO,14

Example: What sequence of make codes and break codes should be sent to your computer
for the character "G" to appear in aword processor? Sincethisis an upper-case letter, the
sequence of events that need to take place are: press the "Shift" key, pressthe "G" key,
release the "G" key, release the "Shift" key. The scan codes associated with these events

arethe following: make code for the "Shift" key (12h), make code for the "G" key (34h),
break code for the "G" key(FOh,34h), break code for the "Shift" key (FOh,12h). Therefore,
the data sent to your computer would be: 12h, 34h, FOh, 34h, FOh, 12h.

If you press akey, its make code is sent to the computer. When you press and hold down a key, that
key becomes typematic, which means the keyboard will keep sending that key's make code until the key
isreleased or another key is pressed. To verify this, open atext editor and hold down the "A" key.
When you first press the key, the character "a" immediately appears on your screen. After ashort delay,
another "a" will appear followed by a whole stream of "a's until you release the "A" key. There are two
important parameters here: the typematic delay, which is the short delay between the first and second
"a', and the typematic rate, which is how many characters per second will appear on your screen after
the typematic delay. The typematic delay can range from 0.25 seconds to 1.00 second and the
typematic rate can range from 2.0 cps (characters per second) to 30.0 cps. You may change the
typematic rate and delay using the " Set Typematic Rate/Delay” (0xF3) command.

Typematic datais not buffered within the keyboard. In the case where more than one key is held down,
only the last key pressed becomes typematic. Typematic repeat then stops when that key is released,
even though other keys may be held down.

Footnote 1) Actually, the "Pause/Break” key does not have a break code in scan code sets one and two.
When this key is pressed, its make code is sent; when it's released, it doesn't send anything.

Reset:

At power-on or software reset (see the "Reset" command) the keyboard performs a diagnostic self-test
referred to as BAT (Basic Assurance Test) and loads the following default values:

Typematic delay 500 ms.
Typematic rate 10.9 cps.

*Scan code set 2.

*Set all keys typematic/make/break.

*Variable in some keyboards, hard-coded in others.

When entering BAT, the keyboard enables its three LED indicators, and turns them off when BAT has
completed. At thistime, aBAT completion code of either OXAA (BAT successful) or OXFC (Error) is
sent to the host.

Most keyboards ignore their CLOCK and DATA lines until after the BAT completion code has been
sent. Therefore, an "Inhibit" condition (CLOCK line low) may not prevent the keyboard from sending
its BAT completion code.

Command Set:

Every byte sent to the keyboard gets a response of OxFA ("acknowledge") from the keyboard. The only
exceptions to this are the keyboard's response to the "Resend" and "Echo” commands. The host should
wait for an "acknowledge" before sending the next byte to the keyboard. The keyboard clears its output
buffer in response to any command. The following isalist of al commands that may be sent to the
keyboard.

e OxFF (Reset) - Causes keyboard to enter "Reset" mode. (See "Reset" section.)

e OXFE (Resend) - Thisisused to indicate an error in reception. Keyboard responds by resending
the last scan code or command response sent to the host. However, OXFE is never sent in
response to a"Resend" command.

e *OxFD (Set Key Type Make) - Allows the host to specify akey that isto send only make codes.
This key will not send break codes or typematic repeat. Thiskey is specified by its set 3 scan
code.

e *OxFC (Set Key Type Make/Break) - Similar to "Set Key Type Make", but both make codes and
break codes are enabled (typematic is disabled.)

e *OxFB (Set Key Type Typematic) - Similar to previous two commands, except make and
typematic is enabled; break codes are disabled.

e *OxFA (Set All Keys Typematic/Make/Break) - Default setting. Make codes, break codes, and
typematic repeat enabled for all keys (except "Print Screen” key, which has no break code in sets
land2)

e *OxF9 (Set All Keys Make) - Causes only make codes to be sent; break codes and typematic
repeat are disabled for all keys.

e *OxF8 (Set All Keys Make/Break) - Similar to previous two commands, except only typematic
repeat is disabled.

o *OxF7 (Set All Keys Typematic) - Similar to previous three commands, except only break codes
are disabled. Make codes and typematic repeat are enabled.

o OxF6 (Set Default) - Load default typematic rate/delay (10.9cps/ 500ms), key types (all keys
typematic/make/break), and scan code set (2).

e OxF5 (Disable) - Keyboard stops scanning, loads default values (see " Set Default” command),
and waits further instructions.

e OxF4 (Enable) - Re-enables keyboard after disabled using previous command.

e OxF3 (Set Typematic Rate/Delay) - Host follows this command with one argument byte that
defines the typematic rate and delay as follows:

Repeat Rate
Bits 0-4 | Rate(cps) | | Bits 0-4 | Rate(cps) | | Bits 0-4 | Rate(cps) | | Bits 0-4 | Rate(cps)
00h 2.0 08h 4.0 10h 8.0 18h 16.0
01h 2.1 09h 4.3 11h 8.6 19h 17.1
02h 2.3 OAh 4.6 12h 9.2 1Anh 18.5
03h 2.5 0Bh 5.0 13h 10.0 1Bh 20.0
04h 2.7 0Ch 5.5 14h 10.9 1Ch 21.8
05h 3.0 ODh 6.0 15h 12.0 1Dh 24.0
06h 3.3 OEh 6.7 16h 13.3 1Eh 26.7
07h 3.7 OFh 7.5 17h 15.0 1Fh 30.0
Delay
Bits 5-6 Delay (seconds)

00b 0.25

01b 0.50

10b 0.75

11b 1.00

e *OxF2 (Read ID) - The keyboard responds by sending a two-byte device ID of OxAB, 0x83.

e *QOxFO (Set Scan Code Set) - Host follows this command with one argument byte, that specifies
which scan code set the keyboard should use. This argument byte may be 0x01, 0x02, or 0x03 to
select scan code set 1, 2, or 3, respectively. You can get the current scan code set from the
keyboard by sending this command with 0x00 as the argument byte.

e OXEE (Echo) - The keyboard responds with "Echo" (OXEE).

e OXED (Set/Reset LEDSs) - The host follows this command with one argument byte, that specifies
the state of the keyboard's Num Lock, Caps Lock, and Scroll Lock LEDs. This argument byteis
defined as follows:

MSb LSb
Always|Always Always|Always Always| Caps | Num |Scroll
0 0 0 0 0 Lock | Lock | Lock

o "Scroll Lock" - Scroll Lock LED off(0)/on(1)
o "Num Lock" - Num Lock LED off(0)/on(1)
o "CapsLock" - CapsLock LED off(0)/on(1)

*QOriginaly available in PS/2 keyboards only.
Emulation:

Click here for keyboard/mouse routines. Source in MPASM for PIC microcontrollers.
The 18042 Keyboard Controller:

Up to this point in the article, al information has been presented from a hardware point-of-view.
However, if you're writing low-level keyboard-related software for the host PC, you won't be
communicating directly with the keyboard. Instead, a keyboard controller provides an interface
between the keyboard and the peripheral bus. This controller takes care of all the signal-level and
protocol details, as well as providing some conversion, interpretation, and handling of scan codes and
commands.

An Intel 8042/compatible microcontroller is used as the PC's keyboard controller. In modern
computers, this microcontroller is hidden within the motherboard's chipset, which integrates many
controllersin asingle package. Nonetheless, this deviceis still there, and the keyboard controller is
still commonly referred to as "the 8042".

Depending on the motherboard, the keyboard controller may operate in one of two modes:
"AT-compatible” mode, or "PS/2-compatible” mode. The latter is used if a PS/2 mouse is supported by
the motherboard. If thisisthe case, the 8042 acts as the keyboard controller and the mouse controller.
The keyboard controller auto-detects which mode it isto use according to how it's wired to the
keyboard port.

The 8042 contains the following registers:

A one-byte input buffer - contains byte read from keyboard; read-only

A one-byte output buffer - contains byte to-be-written to keyboard; write-only
A one-byte status register - 8 status flags; read-only

A one-byte control register - 7 control flags; read/write

John P Taylor
A one-byte control register - 7 control flags; read/write

The first three registers (input, output, status) are directly accessible via ports 0x60 and 0x64. The last
register (control) isread using the "Read Command Byte" command, and written using the "Write
Command Byte" command. The following table shows how the peripheral ports are used to interface

the 8042:

Port

Read /
Write

Function

0x60

Read

Read Input Buffer

0x60

Write

Write Output Buffer

0x64

Read

Read Status Register

0x64

Write

Send Command

Writing to port 0x64 doesn't write to any specific register, but sends a command for the 8042 to
interpret. If the command accepts a parameter, this parameter is sent to port 0x60. Likewise, any
results returned by the command may be read from port 0x60.

When describing the 8042, | may occasionally refer to its physical 1/0 pins. These pins are defined
below:

AT-compatible mode

Port 1 (Input Port):

Pin/Name|Function Port 2 (Output Port):
Pin/Name|Function
0 |P10 |Undefined System Reset
0 |P20 |1: Normd
0: Reset computer
1 P11 |Undefined
1 P21 |GateA20
2 |P12 |Undefined
2 |P22 |Undefined
3 |P13 |Undefined
. 3 |P23 |Undefined
External RAM
1: Enable external RAM
4 |P14 4 |P24 |Input Buffer Full
0: Disable external .
RAM
Manufacturing Setting 5 |po5 Output Buffer
5 |P15 |1: Setting enabled Empty
0: Setting disabled .
Display Type Switch Keyboard Clock
6 |P16 |1: Color display 6 |P26 |1:Pull Clock low
0: Monochrome 0: High-Z

Port 3 (Test Port):

Pin|Name|Function
Keyboard Clock

0 |TO |(Input)
Keyboard Data

1 |T1 |(Input)

2 |- Undefined

3 |- Undefined

4 |-- Undefined

5 |- Undefined

6 |- Undefined

KEYyDOara 1nnipit SWitcn KEYyDOdra vda _ .
. 7 |P27 |1 Pull Datalow ‘7 ‘ Undefined
1: Keyboard enabled 0: High-Z
0: Keyboard inhibited
PS/2-compatible mode
Port 1 (Input Port): Port 2 (Output Port):
Pin|Name|Function Pin|Name| Function Port 3 (Test Port):
Keyboard Data System Reset Pin/Name|Function
0 |P10 [(Input) 0 |P20 |1: Norma Keyboard Clock
. 0: Reset computer 0 |TO [(Input)
Mouse Data .
1 P11 |(Input) 1 P21 |GateA20 Mouse Clock
. . 1 T1 |(Input)
Mouse Data: :
2 |P12 |Undefined 2 |P22 |1: Pull Datalow
0: High-Z 2 |- Undefined
Mouse Clock:
3 |P13 |Undefined 3 |P23 |1: Pull Clock low
. 0: High-Z 3 |- Undefined
External RAM Keyboard IBF
1: Enable external RAM interrupt:
v 0: Disable external v e 1. Assert IRQ 1 4 |- Undefined
RAM 0: De-assert IRQ 1
Manufacturing Setting Mouse IBF
5 |P15 |1: Setting enabled 5 |pos interrupt: 5 |- Undefined
0: Setting disabled 1: Assert IRQ 12
6 |P16 |1: Color display Keyboard Clock: 6 |- Undefined
0: Monochrome 6 |P26 |1:Pull Clock low
Keyboard Inhibit Switch 0: High-Z
7 p17 Keyboard Data: 7 |- Undefined
1: Keyboard enabled 7 |P27 |1: Pull Datalow
0: Keyboard disabled 0: High-Z

(Note: Reading keyboard controller datasheets can be confusing--it will refer to the "input buffer" asthe
"output buffer" and vice versa. This makes sense from the point-of-view of someone writing firmware
for the controller, but for somebody used to interfacing the controller, this can cause problems.
Throughout this document, | only refer to the "input buffer” as the one containing input from the
keyboard, and the "output buffer" as the one that contains output to be sent to the keyboard.)

Satus Register:

The 8042's status flags are read from port Ox64. They contain error information, status information, and
indicate whether or not datais present in the input and output buffers. The flags are defined as follows:

MSb LSb
AT-compatiblemode: |PERR | RxTO | TXTO| INH | A2 | SYS | IBF | OBF
PS/2-compatible mode: | PERR| TO MOBF| INH | A2 | SYS | IBF | OBF

e OBF (Output Buffer Full) - Indicates when it's okay to write to output buffer.
0: Output buffer empty - Okay to write to port Ox60
1: Output buffer full - Don't write to port Ox60
e |BF (Input Buffer Full) - Indicates when input is available in the input buffer.
O: Input buffer empty - No unread input at port 0x60
1: Input buffer full - New input can be read from port Ox60
e SYS(System flag) - Post reads this to determine if power-on reset, or software reset.
0: Power-up value - System isin power-on reset.
1: BAT code received - System has already beed initialized.
e A2 (Addressline A2) - Used internally by the keyboard controller
0: A2 =0 - Port 0x60 was last written to
1: A2 =1 - Port 0x64 was last written to
e INH (Inhibit flag) - Indicates whether or not keyboard communication is inhibited.
0: Keyboard Clock = 0 - Keyboard is inhibited
1: Keyboard Clock = 1 - Keyboard is not inhibited
e TXTO (Transmit Timeout) - Indicates keyboard isn't accepting input (kbd may not be plugged in).

0: No Error - Keyboard accepted the last byte written to it.
1: Timeout error - Keyboard didn't generate clock signals within 15 ms of "request-to-send".
e RxTO (Receive Timeout) - Indicates keyboard didn't respond to a command (kbd probably broke)

0: No Error - Keyboard responded to last byte.
1: Timeout error - Keyboard didn't generate clock signals within 20 ms of command reception.
e PERR (Parity Error) - Indicates communication error with keyboard (possibly noisy/loose
connection)
0: No Error - Odd parity received and proper command response recieved.
1: Parity Error - Even parity received or OXFE received as command response.
e MOBF (Mouse Output Buffer Full) - Similar to OBF, except for PS/2 mouse.
0: Output buffer empty - Okay to write to auxillary device's output buffer
1: Output buffer full - Don't write to port auxillary device's output buffer
e TO (Genera Timout) - Indicates timeout during command write or response. (Same as TXxTO +
RxTO.)
0: No Error - Keyboard received and responded to last command.
1: Timeout Error - See TXTO and RxTO for more information.

[EG: On my PC, the normal value of the 8042's " Status" register is 14h = 00010100b. Thisindicates
keyboard communication is not inhibited, and the 8042 has already completed its self-test ("BAT").
The "Status' register is accessed by reading from port 64h ("IN AL, 64h")]

Reading keyboard input:

When the 8042 recieves a valid scan code from the keyboard, it is converted to its set 1 equivalent. The
converted scan code is then placed in the input buffer, the IBF (Input Buffer Full) flag is set, and IRQ 1
isasserted. Furthermore, when any byte is received from the keyboard, the 8042 inhibits further
reception (by pulling the "Clock" line low), so no other scan codes will be received until the input

buffer is emptied.

If enabled, IRQ 1 will activate the keyboard driver, pointed to by interrupt vector 0x09. The driver
reads the scan code from port 0x60, which causes the 8042 to de-assert IRQ 1 and reset the IBF flag.
The scan code is then processed by the driver, which responds to special key combinations and updates
an area of the system RAM reserved for keyboard input.

If you don't want to patch into interrupt 0x09, you may poll the keyboard controller for input. Thisis
accomplished by disabling the 8042's IBF Interrupt and polling the IBF flag. Thisflagis set (1) when
datais availablein the input buffer, and is cleared (0) when datais read from the input buffer. Reading
the input buffer is accomplished by reading from port 0x60, and the IBF flag is at port 0x64, bit 1. The
following assembly code illustrates this:

kbRead:

Wi t Loop: in al, 64h ; Read Status byte
and al, 10b ; Test IBF flag (Status<l1>)
jz Wi t Loop ; Wait for IBF =1
in al, 60h ; Read input buffer

Wkiting to keyboard:

When you write to the 8042's output buffer (via port 0x60), the controller sets the OBF (" Output Buffer
Full") flag and processes the data. The 8042 will send this data to the keyboard and wait for a
response. If the keyboard does not accept or generate a response within a given amount of time, the
appropriate timeout flag will be set (see Status register definition for moreinfo.) If anincorrect parity
bit is read, the 8042 will send the "Resend" (OXFE) command to the keyboard. If the keyboard
continues to send erroneous bytes, the "Parity Error” flag is set in the Status register. If no errors occur,
the response byte is placed in the input buffer, the IBF ("Input Buffer Full") flag isset, and IRQ 1is
activated, signaling the keyboard driver.

The following assembly code shows how to write to the output buffer. (Remember, after you write to
the output buffer, you should use int 9h or poll port 64h to get the keyboard's response.)

kbWite:
Wi t Loop: in al, 64h ; Read Status byte
and al, 01b ; Test OBF flag (Status<0>)
j nz Wi t Loop ; Wait for OBF = 0
out 60h, cl ; Wite data to output buffer

Keyboard Controller Commands:

Commands are sent to the keyboard controller by writing to port 0x64. Command parameters are
written to port Ox60 after teh command is sent. Results are returned on port 0x60. Alwaystest the
OBF ("Output Buffer Full") flag before writing commands or parameters to the 8042.

e 0x20 (Read Command Byte) - Returns command byte. (See "Write Command Byte" below).
e 0Ox60 (Write Command Byte) - Stores parameter as command byte. Command byte defined as
follows:

MShb LSb
AT-compatible mode: -- | XLAT| PC EN | OVR | SYS -- INT

PS/2-compatible mode: | -- |XLAT|_EN2| EN - SYS | INT2 | INT

o INT (Input Buffer Full Interrupt) - When set, IRQ 1 is generated when datais available in
the input buffer.
0: IBF Interrupt Disabled - Y ou must poll STATUS<IBF> to read input.
1: IBF Interrupt Enabled - Keyboard driver at software int 0x09 handles input.
o SYS (System Flag) - Used to manually set/clear SY S flag in Status register.
0: Power-on value - Tells POST to perform power-on tests/initialization.
1: BAT code received - Tells POST to perform "warm boot" tests/initiailization.
o OVR (Inhibit Override) - Overrides keyboard's "inhibit" switch on older motherboards.
O: Inhibit switch enabled - Keyboard inhibited if pin P17 is high.
1: Inhibit switch disabled - Keyboard not inhibited even if P17 = high.
o _EN (Disable keyboard) - Disables/enables keyboard interface.
0: Enable - Keyboard interface enabled.
1: Disable - All keyboard communication is disabled.
o PC ("PC Mode") - ???Enables keyboard interface somehow???
0: Disable - ?7??
1: Enable - 72?
o XLAT (Translate Scan Codes) - Enables/disables translation to set 1 scan codes.
0: Trandation disabled - Data appears at input buffer exactly as read from keyboard
1: Tranglation enabled - Scan codes translated to set 1 before put in input buffer
o INTZ2 (Mouse Input Buffer Full Interrupt) - When set, IRQ 12 is generated when mouse
datais available.
0: Auxillary IBF Interrupt Disabled -
1: Auxillary IBF Interrupt Enabled -
o ENZ2 (Disable Mouse) - Disables/enables mouse interface.
0: Enable - Auxillary PS/2 device interface enabled
1: Disable - Auxillary PS/2 device interface disabled

20x90-0x9F (Write to output port) - Writes command's lower nibble to lower nibble of output
port (see Output Port definition.)
P0xA1 (Get version number) - Returns firmware version number.

e 20xA4 (Get password) - Returns OXFA if password exists; otherwise, OxF1.

P0XA5 (Set password) - Set the new password by sending a null-terminated string of scan codes
as this command's parameter.

e 70xA6 (Check password) - Compares keyboard input with current password.

OxA7 (Disable mouse interface) - PS/2 mode only. Similar to "Disable keyboard interface”
(OXAD) command.

O0xA8 (Enable mouse interface) - PS/2 mode only. Similar to "Enable keyboard interface" (OXAE)
command.

O0xA9 (Mouse interface test) - Returns Ox00 if okay, OxO1 if Clock line stuck low, 0x02 if clock
line stuck high, 0x03 if data line stuck low, and Ox04 if dataline stuck high.

OXAA (Controller self-test) - Returns Ox55 if okay.

OxAB (Keyboard interface test) - Returns 0x00 if okay, 0x01 if Clock line stuck low, 0x02 if
clock line stuck high, 0x03 if data line stuck low, and 0x04 if data line stuck high.

OXAD (Disable keyboard interface) - Sets bit 4 of command byte and disables all communication
with keyboard.

e OXAE (Enable keyboard interface) - Clears bit 4 of command byte and re-enables communication
with keyboard.

e OXAF (Get version)

e 0xCO (Read input port) - Returns values on input port (see Input Port definition.)

e OxC1 (Copy input port LSn) - PS/2 mode only. Copy input port's low nibble to Status register
(see Input Port definition)

e 0xC2 (Copy input port MSn) - PS/2 mode only. Copy input port's high nibble to Status register

(see Input Port definition.)

0xDO0 (Read output port) - Returns values on output port (see Output Port definition.)

0xD1 (Write output port) - Write parameter to output port (see Output Port definition.)

0xD2 (Write keyboard buffer) - Parameter written to input buffer asif received from keyboard.

0xD3 (Write mouse buffer) - Parameter written to input buffer as if received from mouse.

0xD4 (Write mouse Device) - Sends parameter to the auxillary PS/2 device.

OXEO (Read test port) - Returns values on test port (see Test Port definition.)

OxFO-0OxFF (Pulse output port) - Pulses command's lower nibble onto lower nibble of output port

(see Output Port definition.)

Modern Keyboard Controllers:

So far, I've only discussed the 8042 keyboard controller. Although modern keyboard controllers remain
compatible with the original device, compatibility istheir only requirement (and their goal.)

My motherboard's keyboard controller is a great example of this. | connected a microcontroller+LCD
in paralel to my keyboard to see what data is sent by the keyboard controller. At power-up, the
keyboard controller sent the "Set LED state” command to turn off all LEDs, then reads the keyboard's
ID. When | tried writing data to the output buffer, | found the keyboard controller only forwards the
"Set LED state” command and " Set Typematic Rate/Delay” command. It does not allow any other
commands to be sent to the keyboard. However, it does emulate the keyboard's response by placing
"acknowledge" (OxFA) in the input buffer when appropriate (or OXEE in response to the "Echo"
command.) Furthermore, if the keyboard sends it an erroneous byte, the keyboard controller takes care
of error handling (sends the "Retry" command; if byte still erroneous; sends error code to keyboard and
places error code in input buffer.)

Once again, keep in mind chipset designers are more interested in compatibility than standardization.
Initialization:

The following is the communication between my computer and keyboard when it boots-up. | beleive
the first three commands were initiated by the keyboad controller, the next command (which enables
Num lock LED) was sent by the BIOS, then the rest of the commands were sent my the OS (Win98SE).
Remember, these results are specific to my computer, but it should give you a general idea as to what
happens at startup.

Keyboard: AA Self-test passed ; Keyboard controller init
Host : ED Set/Reset Status |ndicators

Keyboard: FA Acknow edge

Host : 00 Turn off all LEDs

Keyboard: FA Acknow edge

Host : F2 Read ID

Keyboar d:
Keyboar d:

Host :

Keyboar d:

Host :

Keyboar d:

Host :

Keyboar d:

Host :

Keyboar d:

Host :

Keyboar d:

Host :

Keyboar d:

Host :

Keyboar d:

FA
AB
ED
FA
02
FA
F3
FA
20
FA
F4
FA
F3
FA
00

Acknow edge

First byte of ID

Set/ Reset Status Indicators
Acknow edge

Turn on Num Lock LED
Acknow edge

Set Typeratic Rat e/ Del ay
Acknow edge

500 ns / 30.0 reports/sec
Acknow edge

Enabl e

Acknow edge

Set Typematic Rate/del ay
Acknowl edge

250 ns / 30.0 reports/sec
Acknow edge

BIOS init

;W ndows init

101-, 102-, and 104-key keyboards:

Keyboard Scan Codes: Set 1

*All values are in hexadecimal

KEY MAKE BREAK | ----- KEY MAKE BREAK | ----- KEY MAKE BREAK
A 1E 9E 9 0A 8A [1A 9A
B 30 BO) 29 89 | NSERT EO, 52 EO, D2
C 2E AE - ocC 8C HOVE EO, 47 EO, 97
D 20 A0 = oD 8D PG UP EO, 49 EO, C9
E 12 92 \ 2B AB DELETE EO, 53 EO, D3
F 21 Al BKSP OE 8E END EO, 4F EO, CF
G 22 A2 SPACE 39 B9 PG DN EO, 51 EO, D1
H 23 A3 TAB OF 8F U ARROW EO, 48 EO, C8
| 17 97 CAPS 3A BA L ARROW EO, 4B EO, CB
J 24 A4 L SHFT 2A AA D ARROW EO, 50 EO, DO
K 25 A5 L CTRL 1D 9D R ARROW EO, 4D EO, CD
L 26 A6 L GU EO, 5B EO, DB NUM 45 c5
M 32 B2 L ALT 38 B8 KP / EO, 35 EO, B5
N 31 B1 R SHFT 36 B6 KP * 37 B7
¢} 18 98 R CTRL EO, 1D EO, 9D KP - 4A CA
P 19 99 R GUI EO, 5C EO, DC KP + AE CE
Q 10 19 R ALT EO, 38 EO, B8 KP EN EO, 1C EO, 9C
R 13 93 APPS EO, 5D EO, DD KP . 53 D3
S 1F 9F ENTER 1C 9C KP 0 52 D2
T 14 94 ESC 01 81 KP 1 4F CF
U 16 96 F1 3B BB KP 2 50 DO
Y 2F AF F2 3C BC KP 3 51 D1
W 11 91 F3 3D BD KP 4 4B cB
X 2D AD F4 3E BE KP 5 4C cc
Y 15 95 F5 3F BF KP 6 4D CcD
z 2C AC F6 40 Co0 KP 7 47 c7
0 0B 8B F7 41 cl KP 8 48 cs
1 02 82 F8 42 (o7) KP 9 49 (o]
2 03 83 F9 43 C3] 1B 9B
3 04 84 F10 44 C4 ; 27 A7
4 05 85 F11 57 D7 28 A8
5 06 86 F12 58 D8 33 B3
: e & Son | £0.37 | £0.AA = =
7 08 88 SCROLL 46 C6 / 35 B5
8 09 89 PAUSE EEll %%’ ‘::55 - NONE-

ACPI Scan Codes: Windows Multimedia Scan Codes:
Key |MakeCode Break Code Key Make Code|Break Code
Power | EO, 5E EO, DE Next Track EO, 19 EO, 99
Sleep |EO, 5F EO, DF Previous Track |EO, 10 EO, 90
Wake |EO, 63 EO, E3 Stop EO, 24 EO, A4
Play/Pause EO, 22 EO, A2
Mute EO, 20 EO, AO
Volume Up EO, 30 EO, BO
Volume Down |EO, 2E EO, AE
Media Select EO, 6D EO, ED
E-Mail EO, 6C EO, EC
Calculator EO, 21 EO, Al
My Computer | EO, 6B EO, EB
WWW Search | EQ, 65 EO, E5
WWW Home | EOQ, 32 EO, B2
WWW Back EO, 6A EO, EA
WWW Forward | EQ, 69 EO, E9
WWW Stop EO, 68 EO, E8
WWW Refresh | EQ, 67 EO, E7
WWW Favorites| EQ, 66 EO, E6

John P Taylor
Windows Multimedia Scan Codes:

John P Taylor
ACPI Scan Codes:

101-, 102-, and 104-key keyboards:

Keyboard Scan Codes: Set 2

*All values are in hexadecimal

KEY MAKE BREAK | ----- KEY MAKE BREAK | ----- KEY MAKE BREAK
A 1C Fo, 1C 9 46 FO, 46 [54 FO, 54
B 32 Fo, 32 : OE FO, OE | NSERT EO, 70 EO, FO, 70
C 21 FO, 21 = 4E FO, 4E HOVE EO, 6C EO, FO, 6C
D 23 Fo, 23 = 55 FO, 55 PG UP EO, 7D EO, FO, 7D
E 24 FO, 24 \ 5D FO, 5D DELETE EO, 71 EO, FO, 71
F 2B FO, 2B BKSP 66 FO, 66 END EO, 69 EO, FO, 69
G 34 FO, 34 SPACE 29 FO, 29 PG DN EO, 7A EO, FO, 7A
H 33 Fo, 33 TAB oD FO, OD U ARROW EO, 75 EO, FO, 75
[43 FO, 43 CAPS 58 FO, 58 L ARROW EO, 6B EO, FO, 6B
J 3B FoO, 3B L SHFT 12 FO, 12 D ARROW EO, 72 EO, FO, 72
K 42 FO, 42 L CTRL 14 FO, 14 R ARROW EO, 74 EO, FO, 74
L 4B FO, 4B L QU EO, 1F EO, FO, 1F NUM 77 FO, 77
M 3A FO, 3A L ALT 11 FoO, 11 KP / EO, 4A EO, FO, 4A
N 31 FoO, 31 R SHFT 59 FO, 59 KP * 7C Fo, 7C
o) 44 FO, 44 R CTRL EO, 14 EO, FO, 14 KP - 7B FO, 7B
P 4D FO, 4D R QU EO, 27 EO, FO, 27 KP + 79 FO, 79
Q 15 Fo, 15 R ALT EO, 11 EO, FO, 11 KP EN EO, 5A EO, FO, 5A
R 2D FO, 2D APPS EO, 2F EO, FO, 2F KP . 71 Fo, 71
S 1B FO, 1B ENTER 5A FO, 5A KP 0 70 FO, 70
T 2C FO, 2C ESC 76 FO, 76 KP 1 69 FO, 69
U 3C Fo, 3C F1 05 FO, 05 KP 2 72 FO, 72
Y] 2A FO, 2A F2 06 FO, 06 KP 3 7A FO, 7A
W 1D FO, 1D F3 04 FO, 04 KP 4 6B FO, 6B
X 22 FO, 22 F4 0C FO, 0C KP 5 73 FoO, 73
Y 35 Fo, 35 F5 03 Fo, 03 KP 6 74 Fo, 74
Z 1A FO, 1A F6 0B FO, OB KP 7 6C FO, 6C
0 45 FO, 45 F7 83 FO, 83 KP 8 75 FO, 75
1 16 Fo, 16 F8 0A FO, OA KP 9 7D FO, 7D
2 1E FO, 1E F9 01 FO, 01] 5B FO, 5B
3 26 FO, 26 F10 09 FO, 09 ; 4C FO, 4C
4 25 FO, 25 F11 78 FO, 78 52 FO, 52
5 2E FO, 2E F12 07 FO, 07 41 FO, 41

EO, FO,
PRNT EO, 12,
6 36 FO, 36 SCRN EO0. 7C 7C, EO, 49 FO, 49
FoO, 12
7 3D FO, 3D SCROLL 7E Fo, 7E / 4A FO, 4A
- NONE-
E1, 14, 77,
8 3E FO, 3E PAUSE E1, FO, 14,
Fo, 77
ACPI Scan Codes: Windows Multimedia Scan Codes:
Key |MakeCode|Break Code Key Make Code|Break Code
Power | EO, 37 EO, FO, 37 Next Track EO, 4D EO, FO, 4D
Sleep |EO, 3F EO, FO, 3F Previous Track |EO, 15 EO, FO, 15
Wake |EO, 5E EO, FO, 5E Stop EO, 3B EO, FO, 3B
Play/Pause EO, 34 EO, FO, 34
Mute EQ, 23 EO, FO, 23
Volume Up EO, 32 EO, FO, 32
Volume Down |EQO, 21 EO, FO, 21
M edia Select EO, 50 EO, FO, 50
E-Mail EO, 48 EO, FO, 48
Calculator EO, 2B EO, FO, 2B
My Computer | EQ, 40 EO, FO, 40
WWW Search | EO, 10 EO, FO, 10
WWW Home EO, 3A EO, FO, 3A
WWW Back EO, 38 EO, FO, 38
WWW Forward | EO, 30 EO, FO, 30
WWW Stop EO, 28 EO, FO, 28
WWW Refresh | EO, 20 EO, FO, 20
WWW Favorites| EO, 18 EO, FO, 18

John P Taylor
Windows Multimedia Scan Codes:

John P Taylor
ACPI Scan Codes:

AT Keyboard Scan Codes (Set 3)

EY | MAKE |[BREAK| ----- KEY | MAKE | BREAK| ----- KEY | MAKE |BREAK
A 1C | Fo, 1C 9 46 | FO, 46 [54 | FO,54
B 32 | Fo,32 : OE | FO, OE INSERT | 67 | FO, 67
c 21 | Fo, 21 - 4E | FO, 4E HOMVE 6E | FO, 6E
D 23 | Fo,23 = 55 | FO,55 PG UP | 6F | FO,6F
E 24 | Fo,24 \ 5C | FO,5C DELETE | 64 | FO,64
F 2B | FO, 2B BKSP 66 | FO, 66 END 65 | FO, 65
G 34 | Fo,34 SPACE | 29 | FO, 29 PGDN | 6D | FO,6D
H 33 | Fo,33 TAB oD | FO, 0D U ARROM 63 | FO, 63
| 43 | Fo, 48 CAPS 14 | Fo, 14 L ARROM 61 | FO, 61
J 38 | FO, 3B L SHFT | 12 | FO, 12 D ARRON 60 | FO,60
K 42 | Fo, 42 L CTRL| 11 | Fo, 11 R ARROM 6A | FO, 6A
L 4B | FO, 4B L WN | 8B | Fo, 8B NUM 76 | FO, 76
M 3A | FO,3A L ALT | 19 | Fo, 19 KP / 4A | FO, 4A
N 31 | Fo,31 R SHFT | 59 | FO,59 KP * 7E | Fo, 7E
0 44 | Fo, 44 RCIRL| 58 | FO,58 KP - AE | FO, 4E
P 4D | Fo, 4D RWN | 8C | Fo,8cC KP + 7C | Fo,7C
Q 15 | Fo, 15 RALT | 39 | Fo,39 KPEN | 79 | FO,79
R 2D | FO, 2D APPS 8D | FO, 8D KP . 71 | Fo, 71
S 1B | FO, 1B ENTER | 5A | FO,5A KP 0 70 | FO, 70
T 2C | Fo,2C ESC 08 | Fo,08 KP 1 69 | FO, 69
u 3C | Fo,3C F1 07 | Fo, 07 KP 2 72 | Fo, 72
Y 2A | FO,2A F2 OF | FO,OF KP 3 7A | FO, 7A
W 1D | FO, 1D F3 17 | Fo, 17 KP 4 6B | FO, 6B
X 22 | Fo,22 F4 1IF | Fo, 1F KP 5 73 | F0, 73
Y 35 | FO, 35 F5 27 | Fo, 27 KP 6 74 | FO, 74
z 1A | Fo, 1A F6 2F | Fo, 2F KP 7 6C | FO, 6C
0 45 | Fo, 45 F7 37 | Fo, 37 KP 8 75 | FO, 75
1 16 | FO, 16 F8 3F | FO,3F KP 9 7D | FO, 7D
2 1E | Fo, 1E F9 47 | Fo, 47] 58 | FO, 5B
3 26 | FO, 26 F10 4F | Fo, 4F : 4C | Fo,4C
4 25 | FO,25 F11 56 | FO,56 52 | FO,52
5 2E | FO, 2E F12 5E | FO, 5E , 41 | Fo, 41
6 36 | FO, 36 R 57 | Fo,57 49 | Fo, 49

3D | FO,3D SCROLL | 5F | Fo,5F / 4A | FO, 4A
8 3E | FO, 3E PAUSE | 62 | FO,62

PS/2 Device Routines:

Copywrite 2001, Adam Chapweske

These routines can be used to emulate a PS/2 mouse or keyboard. They were written for a PIC16F84 @
4.61 MHz +/- 25% (perfect for a 5k/20pF RC oscillator). For more information about the PS/2 mouse,
keyboard, and their protocol, check out one of the folowing links:

PS/2 bus clock lowtine = 40 us +/ - 25% (30 us - 50 us)

PS/ 2 bus clock high time = 40 us +/ - 25% (30 us - 50 us)

; RC osc @20pF/5k = 4.61 MHz +/- 25% (3.50 MHz - 5.76 Miz)

1 instruction cycle @4.61 MHz (RC) = 0.87 us +/- 25% (0.65 us - 1.09 us)
Optimum PS/ 2 bus clock lowtime @.61MHz = 45.97 instruction cycles

Actual PS/2 bus clock lowtime = 46 instruction cycles

Actual PS/2 bus clock lowtime @.61MHz (RC) = 40.0us +/- 25% (30us-50us)
Actual PS/2 bus clock frequency @61MHz (RC) 12.5 kHz +/- 25% (10. OkHz- 16. 7k

HEADER:

TITLE "PS/ 2 Device Routines"

SUBTI TLE "By Adam Chapweske"

LI ST P=16F84

I NCLUDE "pl6f84.inc"

RADI X DEC

ERRORLEVEL -224, 1

__CONFI G _CP_OFF & WDOT _OFF & RC 0OsC
; DEFI NES:

#DEFI NE DATA PORTB, 7
#DEFI NE CLOCK PCRTB, 6

cbl ock
TEMPO
RECEI VE
PARI TY

COUNTER
endc

Required Routines & Macros:

Del ay macr o Ti me ; Del ay "Cycles" instruction cycles
if (Time==1)
nop
exitm
endi f
if (Time==2)
goto $ + 1
exitm
endi f
if (Time==3)
nop
goto $ + 1
exitm
endi f
if (Time==4)
goto $ + 1
goto $ + 1
exitm
endi f
if (Time==5)
goto $ + 1
goto $ + 1
nop
exitm
endi f
if (Time==6)
goto $ + 1
goto $ + 1
goto $ + 1
exitm
endi f
if (Time==7)
goto $ + 1
goto $ + 1
goto $ + 1
nop
exitm
endi f

if (Ti me%t==0)
novliw (Tinme-4)/4
call Delay_Routine
exitm

endi f

if (Timev%==1)
novlw (Tinme-5)/4
call Delay_Routine
nop
exitm

endi f

if (Time%t==2)
movlw (Time-6)/4
call Delay_Routine
goto $ + 1
exitm

endi f

if (Time%t==3)
movliw (Time-7)/4
call Delay_Routine
goto $ + 1
nop

; Del ays 4w+4 cycles (including call,return, and movliw) (0=256)

Del ay_Routi ne addlw -1 ; Preci se delays used in 1/0O
bt fss STATUS, Z
goto Del ay_Routi ne
return

ByteOut:
Sends a bytein w to the host. Returns OxFE if inhibited during transmission. Returns OXFF if host
interrupts to send its own data. Returns 0x00 if byte sent successfully.

; OUTPUT ONE BYTE: - TIMNG IS CRITICAL!!!
Byt eQut movwf TEMPO
I nhi bi t Loop btfss CLOCK ; Test for inhibit
goto I nhi bi t Loop
Del ay 50
btfss CLOCK
goto I nhi bi t Loop
btfss DATA ; Check for request-to-send

retlw OxFF
clrf PARI TY
novliw 0x08
novwf COUNTER
movliw 0x00

call Bi t Qut ;Start bit (0)
bt fss CLOCK ; Test for inhibit
got o Byt eCut End
Del ay 4
Byt eCut Loop novf TEMPO, w
xor wf PARI TY, f
call Bi t Qut ;Data bits
bt fss CLOCK ; Test for inhibit
got o Byt eCut End
rrf TEMPO, f

decfsz COUNTER, f
got o Byt eQut Loop

Del ay 2

conf PARI TY, w

call Bi t Qut ;Parity bit
btfss CLOCK ; Test for inhibit
goto Byt eCut End

Del ay 5

novlw OxFF

call Bi t Qut ;Stop bit (1)

Del ay 48

retlw 0x00

Byt eQut End bsf STATUS, RPO
bsf DATA
bsf CLOCK
bcf STATUS, RPO

retlw OxFE

Bi t Qut bsf STATUS, RPO
andl w 0x01
bt fss STATUS, Z

bsf DATA

btfsc STATUS, Z
bcf DATA

Del ay 21

bcf CLOCK

Del ay 45

bsf CLOCK

bcf STATUS, RPO
Del ay 5

return

Byteln:

Reads a byte from the host. Result in "RECEIVE" register. Returns OXFE inw if host aborts
transmission. Returns OxFF inw if framing/parity error detected. Returns 0x00 inw if byte received
successfully.

Byteln btfss CLOCK ;Wait for start bit
got o Byt el n
btfsc DATA
got o Byt el n
novliw 0x08
novwf COUNTER
clrf PARI TY

Del ay 28
Byt el nLoop call Bitln ;Data bits
btfss CLOCK ; Test for inhibit
retlw OxFE
bcf STATUS, C
rrf RECEI VE, f

i or wf RECEI VE, f
xor wf PARI TY, f

decfsz COUNTER, f
goto Byt el nLoop

Del ay 1
call Bitln ;Parity bit
bt fss CLOCK ; Test for inhibit

retlw OxFE
xor wf PARI TY, f

Del ay 5
Byt el nLoopl Del ay 1
call Bitln ; Stop bit
btfss CLOCK ; Test for inhibit

retlw OxFE
xorlw 0x00
btfsc STATUS, Z
clrf PARI TY

btfsc STATUS, Z ;Stop bit = 17

goto Byt el nLoopl ; No--keep cl ocki ng.
bsf STATUS, RPO ; Acknow edge

bcf DATA

Del ay 11

bcf CLOCK

Del ay 45

bsf CLOCK

Del ay 7

bsf DATA

Bitln

bcf

bt fss
retlw

Del ay
retlw

Del ay
bsf
bcf
Del ay
bsf
bcf
Del ay
btfsc

retlw
retlw

STATUS

PARI TY,
OxFF

45
0x00

8
STATUS
CLOCK
45
CLOCK
STATUS
21
DATA

0x80
0x00

RPO
7 ;Parity correct?
; No--return error
RPO
RPO

