

The AT-PS/2 Keyboard Interface
This article is Copyright 2001, Adam Chapweske

Introduction:

This article tries to cover every aspect of the AT and PS/2 keyboards. It includes information on the
low-level signals and protocol, scan codes, the command set, initialization, compatibility issues, and
other miscellaneous information. Since it's closely related, I've also included information on interfacing
your PC's keyboard controller. As of right now, all code samples involving the keyboard interface are
written in assembly for Microchip's PIC microcontrollers. All code samples for interfacing the PC's
keyboard controller are written in x86 assembly.

I should mention that all of the information in this article comes from my own experiences and from
other sources that may or may not be accurate. I did not consult any official documentation of "AT" or
"PS/2" keyboard standards since none has been available to me. Therefore, I provide the following
disclaimer:

ALL INFORMATION WITHIN THIS ARTICLE IS PROVIDED "AS IS" AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. I DO
NOT GUARANTEE ANY INFORMATION IN THIS ARTICLE IS ACCURATE, AND IT SHOULD
BE USED FOR ABSTRACT EDUCATIONAL PURPOSES ONLY.

You may click here to goto my main page. There, you will find other articles, code, projects, and links
related to the computer keyboard. I am also available for private contracting--click here for more
information about me, including my resume. If you find any errors in this article or have any questions,
feel free to send me an email. I don't have time to respond to them all, but I will read them all and keep
your questions/comments in mind when updating this page.

A History Lesson:

The most popular keyboards in use today include:

USB keyboard - Latest keyboard supported by all new computers (Macintosh and
IBM/compatible). These are relatively complicated to interface and are not covered in this
article.
IBM/compatible keyboards - Also known as "AT keyboards" or "PS/2 keyboards", all modern
PCs support this device. They're the easiest to interface, and are the subject of this article.
ADB keyboards - Connect to the Apple Desktop Bus of older Macintosh systems. These are not
covered in this article

IBM introduced a new keyboard with each of its major desktop computer models. The original IBM
PC, and later the IBM XT, used what we call the "XT keyboard." These are obsolete and differ
significantly from modern keyboards; the XT keyboard is not covered in this article. Next came the
IBM AT system and later the IBM PS/2. They introduced the keyboards we use today, and are the topic
of this article. AT keyboards and PS/2 keyboards were very similar devices, but the PS/2 device used a
smaller connector and supported a few additional features. Nonetheless, it remained backward

compatible with AT systems and few of the additional features ever caught on (since software also
wanted to remain backward compatible.) Below is a summary of IBM's three major keyboards.

IBM PC/XT Keyboard (1981):

83 keys
5-pin DIN connector
Simple uni-directional serial protocol
Uses what we now refer to as scan code set 1
No host-to-keyboard commands

IBM AT Keyboard (1984) - NOT backward compatible with XT systems.

84 -101 keys
5-pin DIN connector
Bi-directional serial protocol
Uses what we now refer to as scan code set 2
Eight host-to-keyboard commands

IBM PS/2 Keyboard (1987) - Backward compatible with AT systems; NOT compatible with XT
systems.

84 - 101 keys
6-pin mini-DIN connector
Bi-direction serial protocol
Offers optional scan code set 3
17 host-to-keyboard commands

The PS/2 keyboard was originally an extension of the AT device. It supported a few additional
host-to-keyboard commands and featured a smaller connector. These were the only differences
between the two devices. However, computer hardware has never been about standards so much as
compatibility. For this reason, any keyboard you buy today will be compatible with PS/2 and AT
systems, but it may not fully support all the features of the original devices.

Today, "AT keyboard" and "PS/2 keyboard" refers only to their connector size. Which
settings/commands any given keyboard does or does not support is anyone's guess. For example, the
keyboard I'm using right now has a PS/2-style connector but only fully supports seven commands,
partially supports two, and merely "acknowledges" the rest. In contrast, my "Test" keyboard has an
AT-style connector but supports every feature/command of the original PS/2 device (plus a few extra.)
It's important you treat modern keyboards as compatible, not standard. If your project relies on
non-general features, it may work on some systems, but not on others...

Modern AT-PS/2 compatible keyboards

Any number of keys (usually 101 or 104)
5-pin or 6-pin connector; adaptor usually included
Bi-directional serial protocol
Only scan code set 2 guarenteed.
Acknowledges all commands; may not act on all of them.

Footnote 1) XT keyboards use a completely different protocol than that used by AT and PS/2 systems,
making it incompatible with the newer PCs. However, there was a transition period where some
keyboard controllers supported both XT and AT-PS/2 keyboards (through a switch, jumper, or
auto-sense.) Also, some keyboards were made to work on both types of systems (again, through the use
of a switch or auto-sensing.) If you've owned such a PC or keyboard, don't let it fool you--XT
keyboards are NOT compatible with modern computers.

General Description:

Keyboards consist of a large matrix of keys, all of which are monitored by an on-board processor
(called the "keyboard encoder".) The specific processor varies from keyboard-to-keyboard but they
all basically do the same thing: Monitor which key(s) are being pressed/released and send the
appropriate data to the host. This processor takes care of all the debouncing and buffers any data in its
16-byte buffer, if needed. Your motherboard contains a "keyboard controller" that is in charge of
decoding all of the data received from the keyboard and informing your software of what's going on.
All communication between the host and the keyboard uses an IBM protocol.

Footnote 1) Originally, IBM used the Intel 8048 microcontroller as its keyboard encoder. The
following is a short list of modern keyboard encoders:

Holtek: HT82K28A, HT82K628A, HT82K68A, HT82K68E
EMC : EM83050, EM83050H, EM83052H, EM83053H,
Intel : 8048, 8049
Motorola : 6868, 68HC11, 6805
Zilog : Z8602, Z8614, Z8615, Z86C15, Z86E23

Footnote 2) Originally, IBM used the Intel 8042 microcontroller as its keyboard controller. This has
since been replaces with compatible devices integrated in motherboards' chipsets. The keyboard
controller is covered later in this article.

Electrical Interface / Protocol:

The AT and PS/2 keyboards use the same protocol as the PS/2 mouse.

Scan Codes:

Your keyboard's processor spends most of its time "scanning", or monitoring, the matrix of keys. If it
finds that any key is being pressed, released, or held down, the keyboard will send a packet of
information known as a "scan code" to your computer. There are two different types of scan codes:
"make codes" and "break codes". A make code is sent when a key is pressed or held down. A break
code is sent when a key is released. Every key is assigned its own unique make code and break code so
the host can determine exactly what happened to which key by looking at a single scan code. The set of
make and break codes for every key comprises a "scan code set". There are three standard scan code
sets, named one, two, and three. All modern keyboards default to set two.

So how do you figure out what the scan codes are for each key? Unfortunately, there's no simple
formula for calculating this. If you want to know what the make code or break code is for a specific
key, you'll have to look it up in a table. I've composed tables for all make codes and break codes in all

three scan code sets:

Scan Code Set 1 - Original XT scan code set; supported by some modern keyboards
Scan Code Set 2 - Default scan code set for all modern keyboards
Scan Code Set 3 - Optional PS/2 scan code set--rarely used

Footnote 1) Originally, the AT keyboard only supported set two, and the PS/2 keyboard would default
to set two but supported all three. Most modern keyboards behave like the PS/2 device, but I have
come across a few that didn't support set one, set three, or both. Also, if you've ever done any low-level
PC programming, you've probably notice the keyboard controller supplies set ONE scan codes by
default. This is because the keyboard controller converts all incomming scan codes to set one (this
stems from retaining compatibility with software written for XT systems.) However, it's still set two
scan codes being sent down the keyboard's serial line.

Make Codes, Break Codes, and Typematic Repeat:

Whenever a key is pressed, that key's make code is sent to the computer. Keep in mind that a make
code only represents a key on a keyboard--it does not represent the character printed on that key. This
means that there is no defined relationship between a make code and an ASCII code. It's up to the host
to translate scan codes to characters or commands.

Although most set two make codes are only one-byte wide, there are a handfull of "extended keys"
whose make codes are two or four bytes wide. These make codes can be identified by the fact that their
first byte is E0h.

Just as a make code is sent to the computer whenever a key is pressed, a break code is sent whenever a
key is released. In addition to every key having its own unique make code, they all have their own
unique break code. Fortunately, however, you won't always have to use lookup tables to figure out
a key's break code--certain relationships do exist between make codes and break codes. Most set two
break codes are two bytes long where the first byte is F0h and the second byte is the make code for that
key. Break codes for extended keys are usually three bytes long where the first two bytes are E0h, F0h,
and the last byte is the last byte of that key's make code. As an example, I have listed below a the set
two make codes and break codes for a few keys:

Key (Set 2)
Make Code

(Set 2)
Break Code

"A" 1C F0,1C
"5" 2E F0,2E

"F10" 09 F0,09
Right Arrow E0, 74 E0, F0, 74
Right "Ctrl" E0, 14 E0, F0, 14

Example: What sequence of make codes and break codes should be sent to your computer
for the character "G" to appear in a word processor? Since this is an upper-case letter, the
sequence of events that need to take place are: press the "Shift" key, press the "G" key,
release the "G" key, release the "Shift" key. The scan codes associated with these events

are the following: make code for the "Shift" key (12h), make code for the "G" key (34h),
break code for the "G" key(F0h,34h), break code for the "Shift" key (F0h,12h). Therefore,
the data sent to your computer would be: 12h, 34h, F0h, 34h, F0h, 12h.

If you press a key, its make code is sent to the computer. When you press and hold down a key, that
key becomes typematic, which means the keyboard will keep sending that key's make code until the key
is released or another key is pressed. To verify this, open a text editor and hold down the "A" key.
When you first press the key, the character "a" immediately appears on your screen. After a short delay,
another "a" will appear followed by a whole stream of "a"s until you release the "A" key. There are two
important parameters here: the typematic delay, which is the short delay between the first and second
"a", and the typematic rate, which is how many characters per second will appear on your screen after
the typematic delay. The typematic delay can range from 0.25 seconds to 1.00 second and the
typematic rate can range from 2.0 cps (characters per second) to 30.0 cps. You may change the
typematic rate and delay using the "Set Typematic Rate/Delay" (0xF3) command.

Typematic data is not buffered within the keyboard. In the case where more than one key is held down,
only the last key pressed becomes typematic. Typematic repeat then stops when that key is released,
even though other keys may be held down.

Footnote 1) Actually, the "Pause/Break" key does not have a break code in scan code sets one and two.
When this key is pressed, its make code is sent; when it's released, it doesn't send anything.

Reset:

At power-on or software reset (see the "Reset" command) the keyboard performs a diagnostic self-test
referred to as BAT (Basic Assurance Test) and loads the following default values:

Typematic delay 500 ms.
Typematic rate 10.9 cps.
*Scan code set 2.
*Set all keys typematic/make/break.

*Variable in some keyboards, hard-coded in others.

When entering BAT, the keyboard enables its three LED indicators, and turns them off when BAT has
completed. At this time, a BAT completion code of either 0xAA (BAT successful) or 0xFC (Error) is
sent to the host.

Most keyboards ignore their CLOCK and DATA lines until after the BAT completion code has been
sent. Therefore, an "Inhibit" condition (CLOCK line low) may not prevent the keyboard from sending
its BAT completion code.

Command Set:

Every byte sent to the keyboard gets a response of 0xFA ("acknowledge") from the keyboard. The only
exceptions to this are the keyboard's response to the "Resend" and "Echo" commands. The host should
wait for an "acknowledge" before sending the next byte to the keyboard. The keyboard clears its output
buffer in response to any command. The following is a list of all commands that may be sent to the
keyboard.

0xFF (Reset) - Causes keyboard to enter "Reset" mode. (See "Reset" section.)
0xFE (Resend) - This is used to indicate an error in reception. Keyboard responds by resending
the last scan code or command response sent to the host. However, 0xFE is never sent in
response to a "Resend" command.
*0xFD (Set Key Type Make) - Allows the host to specify a key that is to send only make codes.
This key will not send break codes or typematic repeat. This key is specified by its set 3 scan
code.
*0xFC (Set Key Type Make/Break) - Similar to "Set Key Type Make", but both make codes and
break codes are enabled (typematic is disabled.)
*0xFB (Set Key Type Typematic) - Similar to previous two commands, except make and
typematic is enabled; break codes are disabled.
*0xFA (Set All Keys Typematic/Make/Break) - Default setting. Make codes, break codes, and
typematic repeat enabled for all keys (except "Print Screen" key, which has no break code in sets
1 and 2.)
*0xF9 (Set All Keys Make) - Causes only make codes to be sent; break codes and typematic
repeat are disabled for all keys.
*0xF8 (Set All Keys Make/Break) - Similar to previous two commands, except only typematic
repeat is disabled.
*0xF7 (Set All Keys Typematic) - Similar to previous three commands, except only break codes
are disabled. Make codes and typematic repeat are enabled.
0xF6 (Set Default) - Load default typematic rate/delay (10.9cps / 500ms), key types (all keys
typematic/make/break), and scan code set (2).
0xF5 (Disable) - Keyboard stops scanning, loads default values (see "Set Default" command),
and waits further instructions.
0xF4 (Enable) - Re-enables keyboard after disabled using previous command.
0xF3 (Set Typematic Rate/Delay) - Host follows this command with one argument byte that
defines the typematic rate and delay as follows:
.

Repeat Rate
Bits 0-4 Rate(cps) Bits 0-4 Rate(cps) Bits 0-4 Rate(cps) Bits 0-4 Rate(cps)
00h 2.0 08h 4.0 10h 8.0 18h 16.0
01h 2.1 09h 4.3 11h 8.6 19h 17.1
02h 2.3 0Ah 4.6 12h 9.2 1Ah 18.5
03h 2.5 0Bh 5.0 13h 10.0 1Bh 20.0
04h 2.7 0Ch 5.5 14h 10.9 1Ch 21.8
05h 3.0 0Dh 6.0 15h 12.0 1Dh 24.0
06h 3.3 0Eh 6.7 16h 13.3 1Eh 26.7
07h 3.7 0Fh 7.5 17h 15.0 1Fh 30.0

Delay
Bits 5-6 Delay (seconds)

00b 0.25
01b 0.50
10b 0.75
11b 1.00

*0xF2 (Read ID) - The keyboard responds by sending a two-byte device ID of 0xAB, 0x83.

*0xF0 (Set Scan Code Set) - Host follows this command with one argument byte, that specifies
which scan code set the keyboard should use. This argument byte may be 0x01, 0x02, or 0x03 to
select scan code set 1, 2, or 3, respectively. You can get the current scan code set from the
keyboard by sending this command with 0x00 as the argument byte.
0xEE (Echo) - The keyboard responds with "Echo" (0xEE).
0xED (Set/Reset LEDs) - The host follows this command with one argument byte, that specifies
the state of the keyboard's Num Lock, Caps Lock, and Scroll Lock LEDs. This argument byte is
defined as follows:

MSb LSb

Always
0

Always
0

Always
0

Always
0

Always
0

Caps
Lock

Num
Lock

Scroll
Lock

"Scroll Lock" - Scroll Lock LED off(0)/on(1)
"Num Lock" - Num Lock LED off(0)/on(1)
"Caps Lock" - Caps Lock LED off(0)/on(1)

*Originally available in PS/2 keyboards only.

Emulation:

Click here for keyboard/mouse routines. Source in MPASM for PIC microcontrollers.

The i8042 Keyboard Controller:

Up to this point in the article, all information has been presented from a hardware point-of-view.
However, if you're writing low-level keyboard-related software for the host PC, you won't be
communicating directly with the keyboard. Instead, a keyboard controller provides an interface
between the keyboard and the peripheral bus. This controller takes care of all the signal-level and
protocol details, as well as providing some conversion, interpretation, and handling of scan codes and
commands.

An Intel 8042/compatible microcontroller is used as the PC's keyboard controller. In modern
computers, this microcontroller is hidden within the motherboard's chipset, which integrates many
controllers in a single package. Nonetheless, this device is still there, and the keyboard controller is
still commonly referred to as "the 8042".

Depending on the motherboard, the keyboard controller may operate in one of two modes:
"AT-compatible" mode, or "PS/2-compatible" mode. The latter is used if a PS/2 mouse is supported by
the motherboard. If this is the case, the 8042 acts as the keyboard controller and the mouse controller.
The keyboard controller auto-detects which mode it is to use according to how it's wired to the
keyboard port.

The 8042 contains the following registers:

A one-byte input buffer - contains byte read from keyboard; read-only
A one-byte output buffer - contains byte to-be-written to keyboard; write-only
A one-byte status register - 8 status flags; read-only

John P Taylor
A one-byte control register - 7 control flags; read/write

The first three registers (input, output, status) are directly accessible via ports 0x60 and 0x64. The last
register (control) is read using the "Read Command Byte" command, and written using the "Write
Command Byte" command. The following table shows how the peripheral ports are used to interface
the 8042:

Port Read /
Write Function

0x60 Read Read Input Buffer

0x60 Write Write Output Buffer

0x64 Read Read Status Register

0x64 Write Send Command

Writing to port 0x64 doesn't write to any specific register, but sends a command for the 8042 to
interpret. If the command accepts a parameter, this parameter is sent to port 0x60. Likewise, any
results returned by the command may be read from port 0x60.

When describing the 8042, I may occasionally refer to its physical I/O pins. These pins are defined
below:

AT-compatible mode
Port 1 (Input Port):
Pin Name Function

0 P10 Undefined
.

1 P11 Undefined
.

2 P12 Undefined
.

3 P13 Undefined
.

4 P14

External RAM
1: Enable external RAM

0: Disable external
RAM

5 P15
Manufacturing Setting
1: Setting enabled
0: Setting disabled

6 P16
Display Type Switch
1: Color display
0: Monochrome
Keyboard Inhibit Switch

Port 2 (Output Port):
Pin Name Function

0 P20
System Reset
1: Normal
0: Reset computer

1 P21 Gate A20
.

2 P22 Undefined
.

3 P23 Undefined
.

4 P24 Input Buffer Full
.

5 P25 Output Buffer
Empty
.

6 P26
Keyboard Clock
1: Pull Clock low
0: High-Z
Keyboard Data:

Port 3 (Test Port):
Pin Name Function

0 T0
Keyboard Clock
(Input)
.

1 T1
Keyboard Data
(Input)
.

2 -- Undefined
.

3 -- Undefined
.

4 -- Undefined
.

5 -- Undefined
.

6 -- Undefined
.

7 P17

Keyboard Inhibit Switch

1: Keyboard enabled
0: Keyboard inhibited

7 P27
Keyboard Data:
1: Pull Data low
0: High-Z

7 -- Undefined
.

PS/2-compatible mode
Port 1 (Input Port):
Pin Name Function

0 P10
Keyboard Data
(Input)
.

1 P11
Mouse Data
(Input)
.

2 P12 Undefined
.

3 P13 Undefined
.

4 P14

External RAM
1: Enable external RAM
0: Disable external
RAM

5 P15
Manufacturing Setting
1: Setting enabled
0: Setting disabled

6 P16
Display Type Switch
1: Color display
0: Monochrome

7 P17

Keyboard Inhibit Switch

1: Keyboard enabled
0: Keyboard disabled

Port 2 (Output Port):
Pin Name Function

0 P20
System Reset
1: Normal
0: Reset computer

1 P21 Gate A20
.

2 P22
Mouse Data:
1: Pull Data low
0: High-Z

3 P23
Mouse Clock:
1: Pull Clock low
0: High-Z

4 P24

Keyboard IBF
interrupt:
1: Assert IRQ 1
0: De-assert IRQ 1

5 P25

Mouse IBF
interrupt:
1: Assert IRQ 12
0: De-assert IRQ 12

6 P26
Keyboard Clock:
1: Pull Clock low
0: High-Z

7 P27
Keyboard Data:
1: Pull Data low
0: High-Z

Port 3 (Test Port):
Pin Name Function

0 T0
Keyboard Clock
(Input)
.

1 T1
Mouse Clock
(Input)
.

2 -- Undefined
.

3 -- Undefined
.

4 -- Undefined
.

5 -- Undefined
.

6 -- Undefined
.

7 -- Undefined
.

(Note: Reading keyboard controller datasheets can be confusing--it will refer to the "input buffer" as the
"output buffer" and vice versa. This makes sense from the point-of-view of someone writing firmware
for the controller, but for somebody used to interfacing the controller, this can cause problems.
Throughout this document, I only refer to the "input buffer" as the one containing input from the
keyboard, and the "output buffer" as the one that contains output to be sent to the keyboard.)

Status Register:

The 8042's status flags are read from port 0x64. They contain error information, status information, and
indicate whether or not data is present in the input and output buffers. The flags are defined as follows:

MSb LSb

AT-compatible mode: PERR RxTO TxTO INH A2 SYS IBF OBF

PS/2-compatible mode: PERR TO MOBF INH A2 SYS IBF OBF

OBF (Output Buffer Full) - Indicates when it's okay to write to output buffer.
0: Output buffer empty - Okay to write to port 0x60
1: Output buffer full - Don't write to port 0x60
IBF (Input Buffer Full) - Indicates when input is available in the input buffer.
0: Input buffer empty - No unread input at port 0x60
1: Input buffer full - New input can be read from port 0x60
SYS (System flag) - Post reads this to determine if power-on reset, or software reset.
0: Power-up value - System is in power-on reset.
1: BAT code received - System has already beed initialized.
A2 (Address line A2) - Used internally by the keyboard controller
0: A2 = 0 - Port 0x60 was last written to
1: A2 = 1 - Port 0x64 was last written to
INH (Inhibit flag) - Indicates whether or not keyboard communication is inhibited.
0: Keyboard Clock = 0 - Keyboard is inhibited
1: Keyboard Clock = 1 - Keyboard is not inhibited
TxTO (Transmit Timeout) - Indicates keyboard isn't accepting input (kbd may not be plugged in).

0: No Error - Keyboard accepted the last byte written to it.
1: Timeout error - Keyboard didn't generate clock signals within 15 ms of "request-to-send".
RxTO (Receive Timeout) - Indicates keyboard didn't respond to a command (kbd probably broke)

0: No Error - Keyboard responded to last byte.
1: Timeout error - Keyboard didn't generate clock signals within 20 ms of command reception.
PERR (Parity Error) - Indicates communication error with keyboard (possibly noisy/loose
connection)
0: No Error - Odd parity received and proper command response recieved.
1: Parity Error - Even parity received or 0xFE received as command response.
MOBF (Mouse Output Buffer Full) - Similar to OBF, except for PS/2 mouse.
0: Output buffer empty - Okay to write to auxillary device's output buffer
1: Output buffer full - Don't write to port auxillary device's output buffer
TO (General Timout) - Indicates timeout during command write or response. (Same as TxTO +
RxTO.)
0: No Error - Keyboard received and responded to last command.
1: Timeout Error - See TxTO and RxTO for more information.

[EG: On my PC, the normal value of the 8042's "Status" register is 14h = 00010100b. This indicates
keyboard communication is not inhibited, and the 8042 has already completed its self-test ("BAT").
The "Status" register is accessed by reading from port 64h ("IN AL, 64h")]

Reading keyboard input:

When the 8042 recieves a valid scan code from the keyboard, it is converted to its set 1 equivalent. The
converted scan code is then placed in the input buffer, the IBF (Input Buffer Full) flag is set, and IRQ 1
is asserted. Furthermore, when any byte is received from the keyboard, the 8042 inhibits further
reception (by pulling the "Clock" line low), so no other scan codes will be received until the input

buffer is emptied.

If enabled, IRQ 1 will activate the keyboard driver, pointed to by interrupt vector 0x09. The driver
reads the scan code from port 0x60, which causes the 8042 to de-assert IRQ 1 and reset the IBF flag.
The scan code is then processed by the driver, which responds to special key combinations and updates
an area of the system RAM reserved for keyboard input.

If you don't want to patch into interrupt 0x09, you may poll the keyboard controller for input. This is
accomplished by disabling the 8042's IBF Interrupt and polling the IBF flag. This flag is set (1) when
data is available in the input buffer, and is cleared (0) when data is read from the input buffer. Reading
the input buffer is accomplished by reading from port 0x60, and the IBF flag is at port 0x64, bit 1. The
following assembly code illustrates this:

kbRead:
WaitLoop: in al, 64h ; Read Status byte
 and al, 10b ; Test IBF flag (Status<1>)
 jz WaitLoop ; Wait for IBF = 1
 in al, 60h ; Read input buffer

Writing to keyboard:

When you write to the 8042's output buffer (via port 0x60), the controller sets the OBF ("Output Buffer
Full") flag and processes the data. The 8042 will send this data to the keyboard and wait for a
response. If the keyboard does not accept or generate a response within a given amount of time, the
appropriate timeout flag will be set (see Status register definition for more info.) If an incorrect parity
bit is read, the 8042 will send the "Resend" (0xFE) command to the keyboard. If the keyboard
continues to send erroneous bytes, the "Parity Error" flag is set in the Status register. If no errors occur,
the response byte is placed in the input buffer, the IBF ("Input Buffer Full") flag is set, and IRQ 1 is
activated, signaling the keyboard driver.

The following assembly code shows how to write to the output buffer. (Remember, after you write to
the output buffer, you should use int 9h or poll port 64h to get the keyboard's response.)

kbWrite:
WaitLoop: in al, 64h ; Read Status byte
 and al, 01b ; Test OBF flag (Status<0>)
 jnz WaitLoop ; Wait for OBF = 0
 out 60h, cl ; Write data to output buffer

Keyboard Controller Commands:

Commands are sent to the keyboard controller by writing to port 0x64. Command parameters are
written to port 0x60 after teh command is sent. Results are returned on port 0x60. Always test the
OBF ("Output Buffer Full") flag before writing commands or parameters to the 8042.

0x20 (Read Command Byte) - Returns command byte. (See "Write Command Byte" below).
0x60 (Write Command Byte) - Stores parameter as command byte. Command byte defined as
follows:

MSb LSb

AT-compatible mode: -- XLAT PC _EN OVR SYS -- INT

PS/2-compatible mode: -- XLAT _EN2 _EN -- SYS INT2 INT

INT (Input Buffer Full Interrupt) - When set, IRQ 1 is generated when data is available in
the input buffer.
0: IBF Interrupt Disabled - You must poll STATUS<IBF> to read input.
1: IBF Interrupt Enabled - Keyboard driver at software int 0x09 handles input.
SYS (System Flag) - Used to manually set/clear SYS flag in Status register.
0: Power-on value - Tells POST to perform power-on tests/initialization.
1: BAT code received - Tells POST to perform "warm boot" tests/initiailization.
OVR (Inhibit Override) - Overrides keyboard's "inhibit" switch on older motherboards.
0: Inhibit switch enabled - Keyboard inhibited if pin P17 is high.
1: Inhibit switch disabled - Keyboard not inhibited even if P17 = high.
_EN (Disable keyboard) - Disables/enables keyboard interface.
0: Enable - Keyboard interface enabled.
1: Disable - All keyboard communication is disabled.
PC ("PC Mode") - ???Enables keyboard interface somehow???
0: Disable - ???
1: Enable - ???
XLAT (Translate Scan Codes) - Enables/disables translation to set 1 scan codes.
0: Translation disabled - Data appears at input buffer exactly as read from keyboard
1: Translation enabled - Scan codes translated to set 1 before put in input buffer
INT2 (Mouse Input Buffer Full Interrupt) - When set, IRQ 12 is generated when mouse
data is available.
0: Auxillary IBF Interrupt Disabled -
1: Auxillary IBF Interrupt Enabled -
_EN2 (Disable Mouse) - Disables/enables mouse interface.
0: Enable - Auxillary PS/2 device interface enabled
1: Disable - Auxillary PS/2 device interface disabled

?0x90-0x9F (Write to output port) - Writes command's lower nibble to lower nibble of output
port (see Output Port definition.)
?0xA1 (Get version number) - Returns firmware version number.
?0xA4 (Get password) - Returns 0xFA if password exists; otherwise, 0xF1.
?0xA5 (Set password) - Set the new password by sending a null-terminated string of scan codes
as this command's parameter.
?0xA6 (Check password) - Compares keyboard input with current password.
0xA7 (Disable mouse interface) - PS/2 mode only. Similar to "Disable keyboard interface"
(0xAD) command.
0xA8 (Enable mouse interface) - PS/2 mode only. Similar to "Enable keyboard interface" (0xAE)
command.
0xA9 (Mouse interface test) - Returns 0x00 if okay, 0x01 if Clock line stuck low, 0x02 if clock
line stuck high, 0x03 if data line stuck low, and 0x04 if data line stuck high.
0xAA (Controller self-test) - Returns 0x55 if okay.
0xAB (Keyboard interface test) - Returns 0x00 if okay, 0x01 if Clock line stuck low, 0x02 if
clock line stuck high, 0x03 if data line stuck low, and 0x04 if data line stuck high.
0xAD (Disable keyboard interface) - Sets bit 4 of command byte and disables all communication
with keyboard.

0xAE (Enable keyboard interface) - Clears bit 4 of command byte and re-enables communication
with keyboard.
0xAF (Get version)
0xC0 (Read input port) - Returns values on input port (see Input Port definition.)
0xC1 (Copy input port LSn) - PS/2 mode only. Copy input port's low nibble to Status register
(see Input Port definition)
0xC2 (Copy input port MSn) - PS/2 mode only. Copy input port's high nibble to Status register
(see Input Port definition.)
0xD0 (Read output port) - Returns values on output port (see Output Port definition.)
0xD1 (Write output port) - Write parameter to output port (see Output Port definition.)
0xD2 (Write keyboard buffer) - Parameter written to input buffer as if received from keyboard.
0xD3 (Write mouse buffer) - Parameter written to input buffer as if received from mouse.
0xD4 (Write mouse Device) - Sends parameter to the auxillary PS/2 device.
0xE0 (Read test port) - Returns values on test port (see Test Port definition.)
0xF0-0xFF (Pulse output port) - Pulses command's lower nibble onto lower nibble of output port
(see Output Port definition.)

Modern Keyboard Controllers:

So far, I've only discussed the 8042 keyboard controller. Although modern keyboard controllers remain
compatible with the original device, compatibility is their only requirement (and their goal.)

My motherboard's keyboard controller is a great example of this. I connected a microcontroller+LCD
in parallel to my keyboard to see what data is sent by the keyboard controller. At power-up, the
keyboard controller sent the "Set LED state" command to turn off all LEDs, then reads the keyboard's
ID. When I tried writing data to the output buffer, I found the keyboard controller only forwards the
"Set LED state" command and "Set Typematic Rate/Delay" command. It does not allow any other
commands to be sent to the keyboard. However, it does emulate the keyboard's response by placing
"acknowledge" (0xFA) in the input buffer when appropriate (or 0xEE in response to the "Echo"
command.) Furthermore, if the keyboard sends it an erroneous byte, the keyboard controller takes care
of error handling (sends the "Retry" command; if byte still erroneous; sends error code to keyboard and
places error code in input buffer.)

Once again, keep in mind chipset designers are more interested in compatibility than standardization.

Initialization:

The following is the communication between my computer and keyboard when it boots-up. I beleive
the first three commands were initiated by the keyboad controller, the next command (which enables
Num lock LED) was sent by the BIOS, then the rest of the commands were sent my the OS (Win98SE).
Remember, these results are specific to my computer, but it should give you a general idea as to what
happens at startup.

Keyboard: AA Self-test passed ;Keyboard controller init
Host: ED Set/Reset Status Indicators
Keyboard: FA Acknowledge
Host: 00 Turn off all LEDs
Keyboard: FA Acknowledge
Host: F2 Read ID

Keyboard: FA Acknowledge
Keyboard: AB First byte of ID
Host: ED Set/Reset Status Indicators ;BIOS init
Keyboard: FA Acknowledge
Host: 02 Turn on Num Lock LED
Keyboard: FA Acknowledge
Host: F3 Set Typematic Rate/Delay ;Windows init
Keyboard: FA Acknowledge
Host: 20 500 ms / 30.0 reports/sec
Keyboard: FA Acknowledge
Host: F4 Enable
Keyboard: FA Acknowledge
Host: F3 Set Typematic Rate/delay
Keyboard: FA Acknowledge
Host: 00 250 ms / 30.0 reports/sec
Keyboard: FA Acknowledge

Keyboard Scan Codes: Set 1
*All values are in hexadecimal

101-, 102-, and 104-key keyboards:

KEY MAKE BREAK ----- KEY MAKE BREAK ----- KEY MAKE BREAK
A 1E 9E 9 0A 8A [1A 9A

B 30 B0 ` 29 89 INSERT E0,52 E0,D2

C 2E AE - 0C 8C HOME E0,47 E0,97

D 20 A0 = 0D 8D PG UP E0,49 E0,C9

E 12 92 \ 2B AB DELETE E0,53 E0,D3

F 21 A1 BKSP 0E 8E END E0,4F E0,CF

G 22 A2 SPACE 39 B9 PG DN E0,51 E0,D1

H 23 A3 TAB 0F 8F U ARROW E0,48 E0,C8

I 17 97 CAPS 3A BA L ARROW E0,4B E0,CB

J 24 A4 L SHFT 2A AA D ARROW E0,50 E0,D0

K 25 A5 L CTRL 1D 9D R ARROW E0,4D E0,CD

L 26 A6 L GUI E0,5B E0,DB NUM 45 C5

M 32 B2 L ALT 38 B8 KP / E0,35 E0,B5

N 31 B1 R SHFT 36 B6 KP * 37 B7

O 18 98 R CTRL E0,1D E0,9D KP - 4A CA

P 19 99 R GUI E0,5C E0,DC KP + 4E CE

Q 10 19 R ALT E0,38 E0,B8 KP EN E0,1C E0,9C

R 13 93 APPS E0,5D E0,DD KP . 53 D3

S 1F 9F ENTER 1C 9C KP 0 52 D2

T 14 94 ESC 01 81 KP 1 4F CF

U 16 96 F1 3B BB KP 2 50 D0

V 2F AF F2 3C BC KP 3 51 D1

W 11 91 F3 3D BD KP 4 4B CB

X 2D AD F4 3E BE KP 5 4C CC

Y 15 95 F5 3F BF KP 6 4D CD

Z 2C AC F6 40 C0 KP 7 47 C7

0 0B 8B F7 41 C1 KP 8 48 C8

1 02 82 F8 42 C2 KP 9 49 C9

2 03 83 F9 43 C3] 1B 9B

3 04 84 F10 44 C4 ; 27 A7

4 05 85 F11 57 D7 ' 28 A8

5 06 86 F12 58 D8 , 33 B3

6 07 87 PRNT
SCRN

E0,2A,
E0,37

 E0,B7,
E0,AA . 34 B4

7 08 88 SCROLL 46 C6 / 35 B5

8 09 89 PAUSE E1,1D,45
E1,9D,C5

-NONE-

Key Make Code Break Code

Power E0, 5E E0, DE

Sleep E0, 5F E0, DF

Wake E0, 63 E0, E3

Key Make Code Break Code

Next Track E0, 19 E0, 99

Previous Track E0, 10 E0, 90

Stop E0, 24 E0, A4

Play/Pause E0, 22 E0, A2

Mute E0, 20 E0, A0

Volume Up E0, 30 E0, B0

Volume Down E0, 2E E0, AE

Media Select E0, 6D E0, ED

E-Mail E0, 6C E0, EC

Calculator E0, 21 E0, A1

My Computer E0, 6B E0, EB

WWW Search E0, 65 E0, E5

WWW Home E0, 32 E0, B2

WWW Back E0, 6A E0, EA

WWW Forward E0, 69 E0, E9

WWW Stop E0, 68 E0, E8

WWW Refresh E0, 67 E0, E7

WWW Favorites E0, 66 E0, E6

John P Taylor
Windows Multimedia Scan Codes:

John P Taylor
ACPI Scan Codes:

Keyboard Scan Codes: Set 2
*All values are in hexadecimal

101-, 102-, and 104-key keyboards:

KEY MAKE BREAK ----- KEY MAKE BREAK ----- KEY MAKE BREAK
A 1C F0,1C 9 46 F0,46 [54 FO,54
B 32 F0,32 ` 0E F0,0E INSERT E0,70 E0,F0,70
C 21 F0,21 - 4E F0,4E HOME E0,6C E0,F0,6C
D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,F0,7D
E 24 F0,24 \ 5D F0,5D DELETE E0,71 E0,F0,71
F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,F0,69
G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,F0,7A
H 33 F0,33 TAB 0D F0,0D U ARROW E0,75 E0,F0,75
I 43 F0,43 CAPS 58 F0,58 L ARROW E0,6B E0,F0,6B
J 3B F0,3B L SHFT 12 FO,12 D ARROW E0,72 E0,F0,72
K 42 F0,42 L CTRL 14 FO,14 R ARROW E0,74 E0,F0,74
L 4B F0,4B L GUI E0,1F E0,F0,1F NUM 77 F0,77
M 3A F0,3A L ALT 11 F0,11 KP / E0,4A E0,F0,4A
N 31 F0,31 R SHFT 59 F0,59 KP * 7C F0,7C
O 44 F0,44 R CTRL E0,14 E0,F0,14 KP - 7B F0,7B
P 4D F0,4D R GUI E0,27 E0,F0,27 KP + 79 F0,79
Q 15 F0,15 R ALT E0,11 E0,F0,11 KP EN E0,5A E0,F0,5A
R 2D F0,2D APPS E0,2F E0,F0,2F KP . 71 F0,71
S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70
T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69
U 3C F0,3C F1 05 F0,05 KP 2 72 F0,72
V 2A F0,2A F2 06 F0,06 KP 3 7A F0,7A
W 1D F0,1D F3 04 F0,04 KP 4 6B F0,6B
X 22 F0,22 F4 0C F0,0C KP 5 73 F0,73
Y 35 F0,35 F5 03 F0,03 KP 6 74 F0,74
Z 1A F0,1A F6 0B F0,0B KP 7 6C F0,6C
0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75
1 16 F0,16 F8 0A F0,0A KP 9 7D F0,7D
2 1E F0,1E F9 01 F0,01] 5B F0,5B
3 26 F0,26 F10 09 F0,09 ; 4C F0,4C
4 25 F0,25 F11 78 F0,78 ' 52 F0,52
5 2E F0,2E F12 07 F0,07 , 41 F0,41

6 36 F0,36 PRNT
SCRN

E0,12,
E0,7C

E0,F0,
7C,E0,
F0,12

 . 49 F0,49

7 3D F0,3D SCROLL 7E F0,7E / 4A F0,4A

8 3E F0,3E PAUSE
E1,14,77,
E1,F0,14,

F0,77

-NONE-

Key Make Code Break Code

Power E0, 37 E0, F0, 37

Sleep E0, 3F E0, F0, 3F

Wake E0, 5E E0, F0, 5E

Key Make Code Break Code

Next Track E0, 4D E0, F0, 4D

Previous Track E0, 15 E0, F0, 15

Stop E0, 3B E0, F0, 3B

Play/Pause E0, 34 E0, F0, 34

Mute E0, 23 E0, F0, 23

Volume Up E0, 32 E0, F0, 32

Volume Down E0, 21 E0, F0, 21

Media Select E0, 50 E0, F0, 50

E-Mail E0, 48 E0, F0, 48

Calculator E0, 2B E0, F0, 2B

My Computer E0, 40 E0, F0, 40

WWW Search E0, 10 E0, F0, 10

WWW Home E0, 3A E0, F0, 3A

WWW Back E0, 38 E0, F0, 38

WWW Forward E0, 30 E0, F0, 30

WWW Stop E0, 28 E0, F0, 28

WWW Refresh E0, 20 E0, F0, 20

WWW Favorites E0, 18 E0, F0, 18

John P Taylor
Windows Multimedia Scan Codes:

John P Taylor
ACPI Scan Codes:

AT Keyboard Scan Codes (Set 3)

KEY MAKE BREAK ----- KEY MAKE BREAK ----- KEY MAKE BREAK
A 1C F0,1C 9 46 F0,46 [54 F0,54

B 32 F0,32 ` 0E F0,0E INSERT 67 F0,67

C 21 F0,21 - 4E F0,4E HOME 6E F0,6E

D 23 F0,23 = 55 F0,55 PG UP 6F F0,6F

E 24 F0,24 \ 5C F0,5C DELETE 64 F0,64

F 2B F0,2B BKSP 66 F0,66 END 65 F0,65

G 34 F0,34 SPACE 29 F0,29 PG DN 6D F0,6D

H 33 F0,33 TAB 0D F0,0D U ARROW 63 F0,63

I 43 F0,48 CAPS 14 F0,14 L ARROW 61 F0,61

J 3B F0,3B L SHFT 12 F0,12 D ARROW 60 F0,60

K 42 F0,42 L CTRL 11 F0,11 R ARROW 6A F0,6A

L 4B F0,4B L WIN 8B F0,8B NUM 76 F0,76

M 3A F0,3A L ALT 19 F0,19 KP / 4A F0,4A

N 31 F0,31 R SHFT 59 F0,59 KP * 7E F0,7E

O 44 F0,44 R CTRL 58 F0,58 KP - 4E F0,4E

P 4D F0,4D R WIN 8C F0,8C KP + 7C F0,7C

Q 15 F0,15 R ALT 39 F0,39 KP EN 79 F0,79

R 2D F0,2D APPS 8D F0,8D KP . 71 F0,71

S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70

T 2C F0,2C ESC 08 F0,08 KP 1 69 F0,69

U 3C F0,3C F1 07 F0,07 KP 2 72 F0,72

V 2A F0,2A F2 0F F0,0F KP 3 7A F0,7A

W 1D F0,1D F3 17 F0,17 KP 4 6B F0,6B

X 22 F0,22 F4 1F F0,1F KP 5 73 F0,73

Y 35 F0,35 F5 27 F0,27 KP 6 74 F0,74

Z 1A F0,1A F6 2F F0,2F KP 7 6C F0,6C

0 45 F0,45 F7 37 F0,37 KP 8 75 F0,75

1 16 F0,16 F8 3F F0,3F KP 9 7D F0,7D

2 1E F0,1E F9 47 F0,47] 5B F0,5B

3 26 F0,26 F10 4F F0,4F ; 4C F0,4C

4 25 F0,25 F11 56 F0,56 ' 52 F0,52

5 2E F0,2E F12 5E F0,5E , 41 F0,41

6 36 F0,36 PRNT
SCRN 57 F0,57 . 49 F0,49

 3D F0,3D SCROLL 5F F0,5F / 4A F0,4A

8 3E F0,3E PAUSE 62 F0,62

PS/2 Device Routines:
Copywrite 2001, Adam Chapweske

These routines can be used to emulate a PS/2 mouse or keyboard. They were written for a PIC16F84 @
4.61 MHz +/- 25% (perfect for a 5k/20pF RC oscillator). For more information about the PS/2 mouse,
keyboard, and their protocol, check out one of the folowing links:

Header:

;---

; CLOCK/TIMING INFORMATION:
;---

;
; PS/2 bus clock low time = 40 us +/- 25% (30 us - 50 us)
; PS/2 bus clock high time = 40 us +/- 25% (30 us - 50 us)
; RC osc @ 20pF/5k = 4.61 MHz +/- 25% (3.50 MHz - 5.76 MHz)
; 1 instruction cycle @ 4.61 MHz (RC) = 0.87 us +/- 25% (0.65 us - 1.09 us)
; Optimum PS/2 bus clock low time @4.61MHz = 45.97 instruction cycles
; Actual PS/2 bus clock low time = 46 instruction cycles
; Actual PS/2 bus clock low time @4.61MHz (RC) = 40.0us +/- 25% (30us-50us)
; Actual PS/2 bus clock frequency @461MHz (RC) = 12.5 kHz +/- 25% (10.0kHz-16.7kHz)

;---

; HEADER:
;---

 TITLE "PS/2 Device Routines"
 SUBTITLE "By Adam Chapweske"
 LIST P=16F84
 INCLUDE "p16f84.inc"
 RADIX DEC
 ERRORLEVEL -224, 1
 __CONFIG _CP_OFF & _WDT_OFF & _RC_OSC

;---

; DEFINES:
;---

#DEFINE DATA PORTB, 7
#DEFINE CLOCK PORTB, 6

;---

; RAM ALLOCATION:
;---

 cblock
 TEMP0
 RECEIVE
 PARITY
 COUNTER
 endc

Required Routines & Macros:

;---

; MACROS:
;---

Delay macro Time ;Delay "Cycles" instruction cycles
 if (Time==1)
 nop
 exitm
 endif
 if (Time==2)
 goto $ + 1
 exitm
 endif
 if (Time==3)
 nop
 goto $ + 1
 exitm
 endif
 if (Time==4)
 goto $ + 1
 goto $ + 1
 exitm
 endif
 if (Time==5)
 goto $ + 1
 goto $ + 1
 nop
 exitm
 endif
 if (Time==6)
 goto $ + 1
 goto $ + 1
 goto $ + 1
 exitm
 endif
 if (Time==7)
 goto $ + 1
 goto $ + 1
 goto $ + 1
 nop
 exitm
 endif
 if (Time%4==0)
 movlw (Time-4)/4
 call Delay_Routine
 exitm
 endif
 if (Time%4==1)
 movlw (Time-5)/4
 call Delay_Routine
 nop
 exitm
 endif
 if (Time%4==2)
 movlw (Time-6)/4
 call Delay_Routine
 goto $ + 1
 exitm
 endif
 if (Time%4==3)
 movlw (Time-7)/4
 call Delay_Routine
 goto $ + 1
 nop

 exitm
 endif
 endm

;---

; DELAY:
;---

;Delays 4w+4 cycles (including call,return, and movlw) (0=256)
Delay_Routine addlw -1 ;Precise delays used in I/O
 btfss STATUS, Z
 goto Delay_Routine
 return

ByteOut:
Sends a byte in w to the host. Returns 0xFE if inhibited during transmission. Returns 0xFF if host
interrupts to send its own data. Returns 0x00 if byte sent successfully.

;---

; OUTPUT ONE BYTE: - TIMING IS CRITICAL!!!
;---

ByteOut movwf TEMP0
InhibitLoop btfss CLOCK ;Test for inhibit
 goto InhibitLoop
 Delay 50
 btfss CLOCK
 goto InhibitLoop
 btfss DATA ;Check for request-to-send
 retlw 0xFF
 clrf PARITY
 movlw 0x08
 movwf COUNTER
 movlw 0x00
 call BitOut ;Start bit (0)
 btfss CLOCK ;Test for inhibit
 goto ByteOutEnd
 Delay 4
ByteOutLoop movf TEMP0, w
 xorwf PARITY, f
 call BitOut ;Data bits
 btfss CLOCK ;Test for inhibit
 goto ByteOutEnd
 rrf TEMP0, f
 decfsz COUNTER, f
 goto ByteOutLoop
 Delay 2
 comf PARITY, w
 call BitOut ;Parity bit
 btfss CLOCK ;Test for inhibit
 goto ByteOutEnd
 Delay 5
 movlw 0xFF
 call BitOut ;Stop bit (1)
 Delay 48
 retlw 0x00

ByteOutEnd bsf STATUS, RP0
 bsf DATA
 bsf CLOCK
 bcf STATUS, RP0
 retlw 0xFE

BitOut bsf STATUS, RP0
 andlw 0x01
 btfss STATUS, Z
 bsf DATA
 btfsc STATUS, Z
 bcf DATA
 Delay 21
 bcf CLOCK
 Delay 45
 bsf CLOCK
 bcf STATUS, RP0
 Delay 5
 return

ByteIn:
Reads a byte from the host. Result in "RECEIVE" register. Returns 0xFE in w if host aborts
transmission. Returns 0xFF in w if framing/parity error detected. Returns 0x00 in w if byte received
successfully.

;---
; READ ONE BYTE: - TIMING IS CRITICAL!!!
;---

ByteIn btfss CLOCK ;Wait for start bit
 goto ByteIn
 btfsc DATA
 goto ByteIn
 movlw 0x08
 movwf COUNTER
 clrf PARITY
 Delay 28
ByteInLoop call BitIn ;Data bits
 btfss CLOCK ;Test for inhibit
 retlw 0xFE
 bcf STATUS, C
 rrf RECEIVE, f
 iorwf RECEIVE, f
 xorwf PARITY,f
 decfsz COUNTER, f
 goto ByteInLoop
 Delay 1
 call BitIn ;Parity bit
 btfss CLOCK ;Test for inhibit
 retlw 0xFE
 xorwf PARITY, f
 Delay 5
ByteInLoop1 Delay 1
 call BitIn ;Stop bit
 btfss CLOCK ;Test for inhibit
 retlw 0xFE
 xorlw 0x00
 btfsc STATUS, Z
 clrf PARITY
 btfsc STATUS, Z ;Stop bit = 1?
 goto ByteInLoop1 ; No--keep clocking.

 bsf STATUS, RP0 ;Acknowledge
 bcf DATA
 Delay 11
 bcf CLOCK
 Delay 45
 bsf CLOCK
 Delay 7
 bsf DATA

 bsf DATA
 bcf STATUS, RP0

 btfss PARITY, 7 ;Parity correct?
 retlw 0xFF ; No--return error

 Delay 45
 retlw 0x00

BitIn Delay 8
 bsf STATUS, RP0
 bcf CLOCK
 Delay 45
 bsf CLOCK
 bcf STATUS, RP0
 Delay 21
 btfsc DATA
 retlw 0x80
 retlw 0x00

